Real-time Gaze-controlled Digital Page Turning System

Yao Chen Zhenzhi Xia Aida Zhumabekova
Electrical Engineering Electrical Engineering SCPD
Stanford Univeristy Stanford University Stanford University

yaochenl@stanford.edu

Abstract

In this paper we will discuss how we are using image
processing to enable real time gaze tracking to use that as
a signal to turn the page of a digitally uploaded note book.
This project was inspired by the everyday problem many
musicians face with not being able to simultaneously play
an instrument and turn the pages of the music sheet. We uti-
lize various image processing and computational imaging
techniques we learned in class to showcase how they can be
leveraged to solve real world problems with high accuracy
and speed.

1. Introduction

For musicians, turning music sheets by hand while play-
ing an instrument has always posed an unpleasant chal-
lenge. The musician often has to stop playing in the middle
of the composition to turn the page, therefore a human page
turner is commonly being used during a performance. How-
ever, during the personal practicing time musicians are left
to deal with this problem on their own. A pianist for ex-
ample, will usually either sacrifice several notes at the end
of each page or spend considerable amount of time to prac-
tice turning the page as quickly as possible so that the music
flow is not affected. Although, there is a fair amount of digi-
tal page turning applications available on the market that use
bluetooth connected foot pedals/other physical attachments
or apps that use music note detection and turn the pages ac-
cordingly, such devices still do not provide musicians with
enough autonomy because they may require extra foot mo-
tion while a pianist needs to pedal the music or, which is the
more common downfall, the note detection algorithm will
turn the page way too early causing a lot of frustration for
musicians. Therefore, we would like to provide a more ro-
bust page turning solution to free musicians hands and feet
and let them devote wholeheartedly to playing music during
their practice sessions and even performance.

Our proposed solution is a program that tracks user’s
pupil movement and turns pages automatically when the

zxia3@stanford.edu

adazoom@stanford.edu

user signals the intent to turn the page by looking at one
of the corners of the page to turn and intentionally blinking.
This allows users to have a free range of hand/feet motions
and to turn pages with an extraordinary ease and speed as
the natural pupil movement is tremendously fast and outper-
forms the speed of moving a hand/foot/producing a sound
cue to turn.

Since pupil tracking is a notoriously hard problem to
solve as was shown in the Virtual Reality/Augmented Re-
ality industry, our program will have to rely on a special-
ized hardware that is widely accepted as the go-to solution
for all sorts of eye activity tracking. We will further discuss
the specifics of our chosen hardware device later in this pa-
per. We also considered using a webcam as our medium for
this solution because many music players today heavily rely
on the electronic music sheets and almost every electronic
device has a webcam attached, however this forced us to
rely on a third-party face tracking library which was not al-
ways producing robust output and therefore would tamper
our performance in some cases. Again, we will discuss the
specifics of the issues later in the paper.

2. Related Work

For Human-Computer-Interaction purpose, a page turn-
ing system usually consists of a real-time image acquisition
system incorporated by some type of the electronic device,
an eye tracking system, and a feedback system for page
turning software. The core of the page turning system is
to track the page turners eye position e.g. gaze, distance
and its orientation in real time. Tremendous work has been
done in this field [9, 3, 8, 11]. Traditional approach de-
tects object position based on the intensity or color distri-
bution. Eigen-face detection[! 1] is one of the methods to
do so, and it could easily be extended into the eigen-eye de-
tection. However, training such classifier actually requires
a large amount of data due to eye shapes, light conditions,
etc. To ease the computational burden of pre-processing the
training data, Zhiwei Zhu et al. proposed a methodology
for real-time eye tracking under various lighting conditions
by combining the bright-pupil effect and the conventional

object detection techniques. Another interesting approach
was used by Morimoto et al., who took advantage of pupil-
corneal reflection technique for gaze tracking.

3. Method

We take a video stream from our specialized device and
feed it into our pupil detection script. The image process-
ing script is written in Python and uses a range of different
image manipulation we have learned in class. First, we seg-
ment out the pupil from the rest of the eye, this allows us
to obtain the gaze direction by calculating the shift between
the geometric center and pupil center. We detect when the
gaze is directed at either of the edges of the digital notebook
that signals the page to turn. Since our notebook is hosted
on a server, when the page turning signal is detected, we
send the real time event to the server through web sock-
ets. The server then translates the python response into
JavaScript and sends the command to turn to the next or
previous page in our HTML music sheet. We will discuss
image processing steps in greater detail later in the paper.

Video
Stream

\

Pupil
detection

l

Gaze
detection

pressee s IS ——— .

1

: “Detected “Detected
' gaze to the gaze to the
: left” right”

[;
b routing through web sockets E

HTML update
request

Page turns

Figure 1. processing pipeline

3.1. Hardware and Data: Pupil Labs

For the real time data capture, we utilize the lightweight
and unobtrusive eye tracker headset provided from Pupil
Labs[2] to capture the raw video frames. The 3D printed
frame holds research grade cameras that are able to record
users’ field of view and eye movements. The cameras are

suspended right under the user’s eye and can be adjusted to
capture the entire eye region in high quality and resolution.
For our purposes we mainly rely on monocular eye move-
ment data due to the higher efficiency of streaming.

Figure 2. Pupil Labs eye tracker and example scene of capturing
video data.

The raw image is given Figure 3. Here, the user can be
seen to indicate right, center and left gazes in the order of
mentioning. We continuously obtain raw images of user’s
eye, and then overlay the detected pupil and gaze informa-
tion on the image during the display stage.

Figure 3. Example raw video frame captured by Pupil Labs Cam-
era

3.2. Algorithm

This section is devoted to the detailed description of the
pupil detection and gaze detection algorithm specially for
our digital page turning system.

3.2.1 Pupil Detection

We proposed two algorithms pipelines for pupil detection.
In the first algorithm, we detect the pupil based on fast ra-
dial symmetry transform (FRST). The pipeline of the first
algorithm is shown as follows in Figure 4:

Thresholding Blob detection

|—! Use Otsu’s method |—f{ Find prominent
to binarize radial connected component

symmetry map as pupil glare

FRST
Obtain radial
symmetry map

Central Moment
Locate pupil center

Figure 4. Pupil detection image processing pipeline 1 using FRST

For clarity, we describe the FRST algorithms as follows
[7]. In FRST algorithm, pupil center estimation is obtained
on the detection of the point presenting the highest radial
symmetry in the image. First, we start with calculating
the horizontal and vertical gradient of the image. Then
we apply a empirical threshold to filter out the points with
least significant gradient with small magnitude to reduce
the number of pixels to be computed in the transform. The
transform is calculated for a specific radius n. For each sig-
nificant point in gradient map, we define the affected pixel
points q as the points located at a distance n from point p
and to which the gradient vector in p points at, as follows:

9(p)
llg(p)ll

Note that points with positive gradients are related to the
direction from dark regions to bright regions. Therefore,
the affected points mainly reside in bright regions. Since
the pupil center contains a bright glare from reflection un-
der lighting conditions, FRST could be applied to detect the
bright zone in the pupil and thus estimate the pupil center.
For each radius n, an orientation projection O,, and a mag-
nitude projection image M,, are created using the affected
pixels q in the following ways:

qg=p+][%1 (1)

On(q) = On(q) +1
My (q) = Mn(q) + llg()|l

O,,(q) is the number of affected pixels, and M, (q) gives
the contribution of each affected pixels in the radius win-
dow n based on the magnitude of the gradient. We then
combine both matrices and convolving them with a Gaus-
sian smoothing mask G ~ N (u, o), to find the contribution
of the radial symmetry of the radius n. a denotes the radial
strictness parameter. High « values eliminate non-radially
symmetric features, while choosing a low « value includes
non-circular symmetry points of interest. Here we use the
empirical value where a = 2.

2

Sp = (M, -02) G (3)

After obtaining the radial symmetry map from fast radial
symmetry transform (FRST), we then apply Otsu’s method
to binarize the radial symmetry map and find the largest
connected components on the radial symmetry map as the
pupil region. The centroid of the largest connected compo-
nent is calculated as the pupil center.

Figure 8 shows the output of different modules in the
first image processing pipeline for pupil detection:

The second algorithm takes advantage of dynamic
thresholding and contour recognition to locate the pupil
center. It incorporates the following fives modules: bilateral
filtering, dynamic thresholding, morphological transforma-
tion, pupil contour extraction and central moment calcula-

Figure 5. Results from image processing pipeline 1 using threshold
and contour

tion. Figure 6 shows the flowchart of the second image
processing pipeline for pupil detection.

Dynamic Morphological
— Thresholding —»{ Processing
extract pupil region recover the pupil
shape

Preprocess
smooth image
with bilateral filter

Central Moment Contour Fitting
Locate pupil Find out pupil
center contour

Figure 6. Pupil detection image processing pipeline 2 using thresh-
old and contour

In order to make the proposed algorithm robust under
different light condition, we introduce the dynamic thresh-
old to extract the pupil region. Note that pupil region is the
darkest region in the eye regardless of the color of iris. Even
if the iris color is dark, it would not affect the pupil center
localization since the iris is moving together with the pupil.

We start finding the dynamic threshold by converting
the eye image from RGB to gray-scale. Next, a dynamic
threshold is found by using adjusted peak and valley method
[4]. Finally, a binary image is obtained with this dynamic
threshold. The histogram of the gray image is calculated in
Figure 7, let g be gray levels, N(g) be number of pixels
in g gray level. Adjusted peak and valley method could be
described as follows.

First, we find the all the peaks on the histogram of the
gray-scale image, g is a peak if

N(g) > N(g+Ag)),Ag=1,...255 4)

We store all the peak in P,. Then find the peak with
smallest level g,,,;,, Which is then used as the threshold to
extract the pupil region. The resulting binary pupil image
looks hollow and noisy, thus we apply the morphological

1200 4

1000 4

800 4

600 4

200 4

Figure 7. Example histogram of gray video frame

operations, dilation and erosion to fills the holes and re-
move the noise. After recovering the shape of the pupil,
contours are detected from boundary of the binary eye im-
age. Next, based on the number of elements in these con-
tours, we choose contours that have this number higher than
a certain amount. These contours contain the pupils bound-
ary. We then calculate the central moment of the chosen
contour regionyt,, as follows:

M, = Z zP -yl
z,y€ Region
o= Y., (=3P (y—7)° (5)
z,y€Region
oo M My
Moo’ Moo

The central moment of pupil contour is used as the pupil
center. Last but not least, we fitted an ellipse to the chosen
to emphasize the detected pupil shape.

Figure 8 shows the output of different modules in the
second image processing pipeline for pupil detection:

Preprocessed Frame Thresholding Morphological
? - L J

_Find Pupil Center Contour Fitting
e .

Figure 8. Results from image processing pipeline 2 using threshold
and contour

3.3. Gaze Detection

As for gaze detection, we start a new algorithm pipeline
by applying the morphological edge detector on a raw video

frame to obtain the binary eye contour. Then, corners from
binary image are extracted by using the Harris corner detec-
tor [5]. Next, corners that belong to the eye corners areas are
selected based on geometric structures eye. After that, the
positions of two eye corners (x;,y;), (-, y,) are detected.
Note that for this algorithm to work, we need to make sure
both ends of the eye appears on the image. Then we cal-
culate the arithmetic mean based on the eye corners coor-
dinates (O, O,) to obtain position of the geometric center
of the eye. Based on the geometric structure of the eye in
Figure 9 , the gaze direction is calculated as follows

P,
r = - 6
G 5.0, (6)
left, (G, < 0.45)
G, = right, (G, > 0.56) 7

center, (0.45 < G, < 0.56)
blink, (G, = None)

(PxPy) Pupil
Pupil center P

(XLY)
Corner

Geometric center
Iris
Figure 9. Geometric structure of Eye

Figure 10 shows the output of different modules in the
second image processing pipeline for pupil detection:

RAW Frame

Edge Detection

Corner Detection

Figure 10. Results from image processing pipeline 3 for gaze de-
tection

G, denotes the ratio of between horizontal coordinates
of the geometric center O, and pupil center P,. G is the
resulting gaze state. Note that blink state is obtained here
if we could not detect any pupil contours. Adding blink
support would make the algorithm more robust, we will il-
lustrate the reason in page turning system section.

3.4. Software: Page Turning System Design

First of all, we initialize the center gaze by having the
user focus on the center dot of the screen. In order to easily
trigger the page flipping event, our initial method was to
specify four hot corners as shown in Figure 11. When
the gaze is directed to one of these hot corners, the server
will receive a real time event through web socket and then
translates this python response into JavaScript and thus
command the digital music sheet to turn to the previous or
next page depending on which hot corner is detected. In
addition, the page will only flip when the current gaze is
different from the last preserved gaze in order to prevent
the duplicated triggering.

Real Scene Simulation Real Scene Simulation Real Scene Simulation

center
gaze state

right-flipping
trigger

left-flipping
trigger

Figure 11. illustration of center gaze state and hot corners trigger-
ing

In the later development and testing stage, however, in
order to make the page turning algorithm more robust, as
shown in Figure 12, we extended these four hot corners
method into two threshold regions along with the addition
of blinking detection. Now every time before the users start
using the system, they will follow the red dot first, and then
two red edge lines so that their center gaze, left and right
threshold gaze states will be recorded down. The compu-
tation of gaze shift is constantly running. The page turning
mechanism will be only fulfilled when the gaze is directed
to the space out of the red lines and a blink is detected. The
blink detection is based on whether our algorithm cannot
obtain the pupil contour within three frames. The two red
calibration lines are able to be re-positioned by user by ad-
justing offset parameters. This is important in our design
in the way that it avoids accidental flipping when users fol-
lows the notes on the digital sheet and blinks without in-
tention to turn the page. We also add a four-frame wait to
distinguish the page turning signaling blink from the natu-
ral blink. This waiting time proved to be the best solution
that is long enough to be reliably different from the natu-
ral blink, but still fast enough for the user to turn the page at
the last second, granting a seamless flow in between reading
music notes and signaling the page to turn. In the end users

are able to quickly turn the pages without posing a tedious
long task.

Figure 12. screenshot of the digital music sheet with calibration
mode on before use

3.5. Web Camera Support

In addition to the eye tracker version, we also worked
with the webcam only version to increase the accessibil-
ity of our page turning system. Instead of recording the
video via Pupil Labs device, we obtain the real-time eye
image from the built in webcam. This allows us to cater
to a broader audience of potential users and significantly
simplifies the set up process. We used Dlib Library [1] to
extract the eye region. First, we find the face region with
the Dlib face detection model based on Hessian of Gaus-
sian (HoG) features and SVM. Then we locate the facial
landmarks which including eyes, eyebrows, nose, ears, and
mouth critical feature points and extract the eye features
points.

Figure 13. Eye lankmark points

From the eye feature points in Figure 13, we could de-
rive the eye aspect ratio (EAR) which is close related to
blink state.

[p2 — p6|| + [|p3 — p5||

EAR =
2 ||pl — p4|

®)

Note that, the eye aspect ratio is approximately constant
while the eye is open, but will rapidly fall to zero when
a blink is taking place. Detecting blink would be signifi-
cant to our page turning system due to fast movement of the
eyeballs. Recall that we design the page turning system to
be triggered only when it first detected the corner gaze and
then followed by blinking. Since people would blink un-
consciously, we ask the users to blink for a certain amount
of time, approximately last for 1s for the algorithm to de-
tect. In this way, the page turning would not be accidentally
be triggered by sweeping the eyeballs to the corner nor un-
consciously blinking.

The Eye landmarks also play an important role in gaze
detection. On the one hand, The eye corner coordinate
would be obtained from the eye features points set based
on the geometric structure of the eye. We could then de-
rive the geometric center from the corner coordinates. On
the other hand, we also make use of the eye features points
to calculate the boundary of eye, and crop out the eye re-
gion. The cropped eye image would then be feed into the
above algorithm to detect the pupil center. With pupil center
and geometric center, we could calculate the gaze direction
based on Formula 7.

However, the webcam application is not robust since the
third-party library sometimes could not detect face region
and thus might tamper the application in some cases. Mean-
while, webcam captures eye image at a distance, thus we
have less number of eye pixels and add more difficulty in
reconizing the corner gaze. It requires further parameter
tuning to accurately obtain the gaze direction.

4. Results and Evaluation

Figure 14. example frame capture of live demo.

Figure 14 shows a live demo of our final page turning
system. The music score book is turning to the next page
when the user looks at the right corner. In this section, we
will evaluate our working page turning systems with the fol-

lowing aspects: run time and accuracy.

We used a subset of the labelled pupils in the wild (LPW)
dataset [0, 10] to evaluate the pupil detection algorithm.
LPW dataset contains 66 high-quality, high-speed eye re-
gion videos. The ground truth coordinates of the pupil is
given for each frame in the video. We apply both pupil de-
tection pipelines on 1000 frames and compare the resulting
pupil center coordinates with the ground truth pupil center
coordinates. The performance of the algorithm is evaluated
by calculating the percentage of frames in which pupil cen-
ter are precisely located with less then 5px error. Note that
averaging over all frames reflects little about the algorithm
quality, since a false detection would greatly increase the
MSE and affect the results sharply. Thus, we only calculate
the MSE of frames when pupil is precisely located. The re-
sult is given in Table 2. Since real time implementation of
the page turning system is critical due to the practice con-
sider, run time of the proposed algorithm for both pupil de-
tection and gaze detection are given in table 1,

Method | Run Time
Pupil detection 1(FRST) 6.107s
Pupil detection 2(thresholding) | 0.0235s
Gaze detection 0.0328s

Table 1. Run time evaluation of proposed algorithm pipeline

| Method | Accuracy | trueMSE |

Pupil detection 1(FRST) 75.34% 3.675
Pupil detection 2(thresholding) | 70.09% 3.799
Gaze detection - -

Table 2. Accuracy evaluation of proposed algorithm pipeline

From the above tables, We could see that pupil detection
algorithm 2 with thresholding method is computationally
more efficient than pupil detection algorithm 1 with fast ra-
dial symmetry transform. However, with regard to accuracy
and mean square error, the FRST performed slightly bet-
ter than thresholding method. This might result in the fact
that FRST related on the geometrical symmetrical structure,
and thus are more robust under different light conditions.
Both algorithm are strongly affected when there are thick
eye lashes on the frames, which would result in false pupil
center coordinates and greatly increase the MSE value as
mentioned above.

As for gaze detection, we are unable to find an appro-
priate data set labelled with ground-truth gaze to evaluate
our gaze detection at this time. Instead, we perform a small
subjective case study to evaluate the user experience with
our page turning system by measuring the percentage of ef-

fective page turning operations. The results are given in
Table 4. We could see that better accuracy are obtained
when detecting the right corner gaze. This might result in
the relatively different movement of eye ball required for
looking left and look right. The pupil center shift might be
more obvious when looking right than looking left.

look left | look right
correct detection 125 138
total try 151 150
accuracy 82.7% 91.4%

Table 3. Accuracy of the page turning system

5. Discussion and Future Work

e During our evaluation trials we noticed that users who
wear glasses are not consistently receiving accurate re-
sults. This proved to be an outcome of our algorithm
wrongfully detecting glares on the glasses as pupil.
This problem can be easily solved by adding a color
detection fragment to our pipeline that matches the
original color of the detected region to the possible
pupil color, simply put if the color of the detected pupil
is not black it should not be classified as pupil.

e Another user specific issue that affected our algorithm
quality is posed by the false detection of the pupil re-
gion, which is caused by misinterpreting dark colored
lashes as a pupil. If this happens during runtime, the
page can be accidentally turned when the user did not
intend to do so. However, if this happens during the set
up process, which happened only once in our trial runs,
then the center of the eye will not be detected correctly
which will produce unexpected results for turning. The
problem seems to only affect users with black, well de-
fined long lashes. As it appears to be this is a known
problem in other pupil tracking techniques as well, and
the only way to overcome this is by making our pupil
detection algorithm more robust.

e As an extension for our project we explored using the
built in web camera for video recording instead of the
specialized PupilLabs hardware. For that we utilized
Dlib facial recognition library that allowed us to seg-
ment out user’s eyes from the rest of the background
in every frame. However, using DIib library eye track-
ing considerably slowed down the entire pipeline to the
point where the real time page turning was not effec-
tive. Instead, we can try using OpenCV facial recogni-
tion library to specify the region of the user’s face and
do the eye segmentation ourselves by using template
matching or possibly a training dataset which would

recognize the eye region. This will allow us to identify
potential bottlenecks and address them accordingly to
speed up the entire process.

Also, as we collect more reference data and obtain
more usage time, we will need to address the issue
of quality testing. Right now, we are using the out-
put video from the user’s session to manually evalu-
ate when the page turning is triggered and compare it
against the turn history of our algorithm. This is not
a trivial task and is not scale-able. As a potential so-
lution we can automize this process by simultaneously
running the gaze detection provided by PupilLabs and
using that output as the source of ground truth against
our custom output. Since PupilLabs is a library relied
on by a large number of other users and research it is
safe to assume their gaze tracking is fairly reliable. We
can overlay the graphical output we produce with their
video output and compare the two pupil outlines frame
by frame in an automated manner which will produce
a percentage of identical frames. Ideally, we should
strive for {99

6. External Link

Initial result with prerecorded eye movement video data:
video link here

Final result with live video stream data: video link here

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

Dlib Library, http://dlib.net/.

Pupil Labs, https://pupil-labs.com/.

R. K. Bellamy, B. E. John, J. T. Richards, C. B. Swart, J. C.
Thomas, S. M. Trewin, et al. Correcting systematic calibra-
tion errors in eye tracking data, Oct. 10 2017. US Patent
9,782,069.

N. H. Cuong and H. T. Hoang. Eye-gaze detection with a
single webcam based on geometry features extraction. In
2010 11th International Conference on Control Automation
Robotics & Vision, pages 2507-2512. IEEE, 2010.

K. G. Derpanis. The harris corner detector. York University,
2004.

Y. S. A. B. Marc Tonsen, Xucong Zhang. Labelled pupils in
the wild (LPW) dataset.

I. Martinikorena, R. Cabeza, A. Villanueva, I. Urtasun, and
A. Larumbe. Fast and robust ellipse detection algorithm for
head-mounted eye tracking systems. Machine Vision and Ap-
plications, 29(5):845-860, 2018.

C. H. Morimoto and M. R. Mimica. Eye gaze tracking tech-
niques for interactive applications. Computer vision and im-
age understanding, 98(1):4-24, 2005.

P. B. Nguyen, J. Fleureau, C. Chamaret, and P. Guillotel.
Method for calibration free gaze tracking using low cost
camera, Oct. 23 2018. US Patent App. 14/389,783.

https://www.youtube.com/watch?v=I_y4QTApadI
https://www.youtube.com/watch?v=OchLFQZrU1c

[10]

(11]

M. Tonsen, X. Zhang, Y. Sugano, and A. Bulling. Labelled
pupils in the wild: a dataset for studying pupil detection in
unconstrained environments. In Proceedings of the Ninth Bi-
ennial ACM Symposium on Eye Tracking Research & Appli-
cations, pages 139-142. ACM, 2016.

M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of cognitive neuroscience, 3(1):71-86, 1991.

	. Introduction
	. Related Work
	. Method
	. Hardware and Data: Pupil Labs
	. Algorithm
	Pupil Detection

	. Gaze Detection
	. Software: Page Turning System Design
	. Web Camera Support

	. Results and Evaluation
	. Discussion and Future Work
	. External Link

