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Abstract

*This is a joint project between EE 367 and EE 368 at
Stanford University.

Accurate depth maps are critical in movie production,
and augmented reality. Light field imaging processing has
seen moderate traction for scene depth mapping and re-
construction. We explored three depth mapping algorithms
least squares gradient (LSG) , plane sweeping, and epipo-
lar plane strategies in order to determine their depth es-
timation accuracy as well as their relative computational
intensities. Using light field images of simulated and real
scenes, we computed their depth maps using the three meth-
ods and computed the overall time it took to compute on our
machines in Matlab. Overall, plane sweeping appeared to
generate the most accurate depth maps, but turned out to
be very time intensive. LSG was the least computationally
intensive, but produced the least accurate depth maps. The
epipolar technique performed moderately well for both met-
rics.

1. Motivation and Objective

Depth mapping has many wide ranging applications. In
movie production it is used as a means of creating accu-
rate models of movie sets and objects for post production
tasks such as rotoscoping. Being able to create accurate 3D
representations of a scene also apply heavily to augmented
reality (AR) applications. In order to superimpose digital
content onto the real world, there must be a way to map
the contours of the real world so that a digital content can
accurately interact with the real world.

Current approaches use specialized time of flight (ToF),
or depth, cameras in order to accomplish this. Basically,
this works with a laser or infrared source emitting light at
different points in a scene simultaneously. The disparity in

the time of the reflected light off of surfaces is used in or-
der to determine the appropriate depths of various objects.
This approach works well for coarse representations of the
world, but can be problematic for features that fall below the
resolution of the depth camera. This is partially due in part
to the fact that the patterns emitted by ToF cameras have
poor spatial resolution at farther distances. Not to mention,
it becomes very difficult to map the features of rooms and
environments far away since depth cameras have range lim-
itations due to the scattering of the reflected infrared light
at greater distances. This makes meshing the outdoors dif-
ficult.

Light field imaging has many wide ranging applications
such as post image capture refocusing and scene depth es-
timation. In recent years, it’s seen more traction for use
in depth mapping as seen from the research done by Dis-
ney. One of the major drawbacks however, is that light
fields generally contain large amounts of data since mul-
tiple views of a particular scene must be captured at a time.
This makes it computationally costly to compute for dispar-
ity and depth maps.

Therefore, through this project, we hope to improve
these factors by exploring different depth map algorithms.
Particularly, we will be analyzing and implementing the
least squares gradient strategy proposed by Adelson and
Wang in 1992[1], a plane sweeping strategy that was
slightly modified from Yang’s paper on occlusion depth
maps[6], and lastly, an epi-polar plane compression strat-
egy proposed by Kim et al. in 2013[5] in Disney Research,
which also included a fine-to-coarse refinement method to
find the optimal disparity/depth.

2. Related Works

Some work has already been done in using 4D light
fields to create depth maps. For example, Bolles et al.[2]
were the first to extract depth from a dense sampling of im-
ages. However, this method does not perform well with real



world data that contains occlusions, varying illumination,
etc. Many other works use techniques from stereo recon-
struction, including plane sweeping[7]. However, again,
these strategies are not necessarily robust to occlusions or
other factors from real world data. Therefore, we chose the
epi-polar plane strategy since Disney Research has had suc-
cess in reconstructing scenes for films and the least squares
gradient strategy as a baseline. Yucer and Sorkine-Hornung
built on Kim et als Disney Research work by exploring a
technique of using handheld video data to extract unstruc-
tured light fields (light field images captured with an un-
known camera path) in order to create accurate 3D depth
models of objects and segment them from their cluttered
backgrounds [4].

3. Methods
3.1. Dataset

We are using the 4D Light Field Benchmark Dataset[3]
and Stanford Light Field Archive. For 4D Light Field
Benchmark, each 4D light field data contains a 9 x 9 views
with a resolution of 512 x 512. Our quantity evaluation is
based on three data from it, which are ’boxes’, ’dino’ and
"cotton’. For the Stanford Light Field Archive, we took the
"Lego Truck’ light field for quaility evaluation, with 17 x 17
views and 960 x 1280 resolution.

3.2. Least Squares Gradient (LSG) Method

Adelson and Wang explored depth estimation using a
least squares error method between light field images. Dis-
placement of a viewpoint results in a displacement of an
image patch by dA, and dA,. This leads to the following
equality:

L(z,y,u,v) = L(x —dA,,y —dA,,u+ Az, v+ Ay)
This relationship was rearranged and redefined over all im-
age patches as a squared error E, which will be minimized
with respect to d.

E = fa Zp L(z,y,u,v)
Ag, v+ Ay)

—L(x —dA,,y —dA,,u+

d* = argmin F
d
Solving for the previous optimization problem, we arrive

at the following conclusion:

>, (LaLu + LyLy,)

d* =
2 (L3 + LY)

where d represents the displacement between the object’s
image across all the light field images, I, represents the
spatial derivative in the x direction, I, represents the spa-
tial derivative in the y direction, I,, represents the derivative

with respect to the viewing position in the u direction, and
I, represents the derivative with respect to the viewing po-
sition in the v direction.

3.3. Plane Sweeping Method

In our second method, we explore plane sweeping. In
our implementation, we slightly modify the method pro-
posed by in Wang et. al’s Occlusion-aware Depth Estima-
tion Using Light-field Cameras [6]. Instead of performing
this initial depth map method on only two views in the light
field, we apply it to the entire light field.

First, 4D shearing of the light-field data is performed.
This purpose of this is to refocus each light field view to the
center view (demonstrated in the following formula),

Ld(%ya% U) = L(.’L‘ + Ud,y + vd,u,v)

where L, represents the refocused light field view, L is
the original light field view, and d represents the disparity.
In addition, x and y are the spatial coordinates in the hori-
zontal and vertical directions respectively, and u and v are
the light field coordinates in the horizontal and vertical di-
rections respectively.

Once the images have been re-aligned, they are stacked
together and their cost volume, C, is found. (Variance is
used as cost function in this implementation.)

Lg(x,y,u,v) = Ly(z,y,u,v)
v |ZZ

uclU v EV

Lg(z,y,u,v) is the mean of Ly(z,y,u,v), and U and V
are the set of all possible values of u and v in the light field.
|U| and |V| represent the number of values in each set.

Next, the cost volume is filtered with a box filter of size
3x3. The purpose of this is to create a more visually appeal-
ing result that can help remove some noise.

Lastly, after building the cost volume and filtering it, the
optimal disparity d* is found, and this is used as the dispar-
ity map.

d* = argmin C(z,y, d)
d

3.4. Epipolar-Plane and Fine-to-Coarse Refinement
Method

Kim et al. extracted depth map from dense 3D light
field with high resolution images. It is proposed as robust
method against occlusion. Also, it is efficient with GPU
since there is no global-optimization technique and all pix-
els can be processed in parallel. Our method in this project



is a slightly simplified version from theirs. We ignore the
propagation part here since we are only extracting the depth
map in central view. Also, we generalized this 3D method
into 4D.

First, we compute Edge Confidence C. as

Ce(mvy) = Z || I(x,y) - I(a:/,y/) H

(z’,y")EN(z,y)

where [ is the central view image and /N denotes a 3 x 7
window. We set a threshold of 0.05 in levelO and 0.1 in
every other level in our fine-to-coarse procedure, which we
will explain later.

Second, for each pixel (z,y) in I, we sampled a set of
radiance R in every different views as R(x,y,u,v,d) =
Lz + (& —uw)d,y+ (0 —v)d,s,t)[s=1.n, t=1..m
where n corresponds to number of horizontal views and m
corresponds to number of vertical views. We can then com-
pute a score of color density .S as

S0 = ey L

reR(z,y,u,v,d)

K(r—7)

where K denotes a kernel K (x) = 1— || £ || when ||  [|<
1 and O otherwise. We set h = 0.1 here. Initially, 7 is the
radiance correspond to the pixel that is computing S. To
make 7 more robust, we will update 7 iteratly by mean-shift
algorithm as
K@ -—-mr
R
K(r—r)
Next, we will choose the disparity d+ that maximize
score S.
d* = argmax S(z,y,d)
d

Note that we only keep the d* value with a Depth Confi-
dence C; higher than ¢ = 0.03. Cj can be computed as
follows,

Cd({l?7y) = Ce(xvy) || Smam - S ||

We will get our disparity map D(z,y) and apply a median
filter with a window size of 3 x 3 for denoising. This dis-
parity map will be saved for our next step of fine-to-coarse.
Also, we will update the disparity bound for every pixels
that no d* is assigned.

To fill-up the disparity map pixels with low C'y, we then
start our fine-to-coarse procedure. We first apply a Gaussian
filter on the central view image I, with a kernel size of 7 x 7
and a standard deviation of & = /0.5. After Gaussian blur-
ring, we down-sample the image with a factor of 0.5. We
will start from computing C'e again. This loop will continue
until the dimension of [ is less than 10 pixels. We then up-
sample the disparity maps from the coarsest level to fill-up
every pixels without changing the d+ we obtained from finer
levels and combined them all as the final disparity map D.
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Figure 1. Depths vs. Run Times (in seconds)

4. Results

For the depth Z here, we computed through the Matlab-
tool Heidelberg Dataset provided. It is base on the equation

_ /b

Z
d

where f is focal lengths in pixel and b is the baseline of each
adjacent views. Also, we want to emphasis on the accu-
racy for EPI and Fine-to-coarse method with only the level
0 depth estimation, we will show both the final result (EPI1)
and level O result (EPI2).

5. Analysis and Discussion
5.1. LSG Method

In the LSG method, we noticed pretty accurate recon-
structions of the depth map with a pretty short runtime.
However, it did appear that the depth algorithm worked bet-
ter on the foreground rather than the background. As you
can see in cotton image, the features of the bust match the
ground truth fairly well, but the background is a bit off. The
algorithm does, however, appear to fair better on the back-
ground when there are textures, as you can see in the dino
dataset with the grains of the wood and shadows of the di-
nosaur.

5.2. Plane Sweeping Method

First, some experiments were run with the ’boxes’ light
field from Heidelberg’s dataset[3]. Using varying depths
(or planes), the computation times and mean-squared error
(MSE) were evaluated. As seen in Figure 1, as the number
of depths increases, so does the run time. This makes sense
intuitively, since if there are more depths, the algorithm will



Table 1. Depth Map Algorithm Comparisons using Heidelberg Dataset

Algorithm Boxes Cotton

Original

Ground Truth

LSG

Plane Sweeping

EPI1

EPI2




Table 2. Depth Map Algorithm Error

Algorithm

Boxes Dino

Cotton

LSG

Plane Sweeping

EPI1
EPI2
Table 3. Comparing PSNR and Run Times

Algorithm Boxes PSNR  Boxes Runtime Dino PSNR  Dino Runtime Cotton PSNR  Cotton Runtime
LSG 22.1054 18.95s 26.6546 18.44s 19.3273 18.76s
Plane Sweeping 26.5306 349.14s 33.0201 322.78s 25.3360 352.01s
EPI1 25.4668 181.29s 30.6087 184.33s 20.7369 175.84s
EPI2 26.3023 - 32.9579 - 26.8590 -

have more depths to search through to find the optimal dis-
parity. Meanwhile, looking at Figure 2 as the number of
depths increases, the MSE decreases. This makes sense,
since currently, this algorithm is sweeping through dispari-
ties between -2 and 2. Using these two figures, that although
the mean-squared error decreases with increasing depths, it
does not decrease by much since the scale is on the order
of le-4. Therefore, the results were ran with a depth/plane

number of 11 on the entire light field.

Overall, the images look visually appealing and very
close to the ground truth, as shown in Table 1. In addi-
tion, looking the PSNRs in Table 3, the PSNRs are quite
good and relatively high compared to other methods. In
Table 2, the foreground is relatively dark (low differences
from ground truth) for boxes’ and ’cotton’ but for ’dino’
the image is bright (larger differences from ground truth)



Table 4. Using Lytro Lego Truck from Stanford Light Field Dataset
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Figure 2. Depths vs. Mean-Squared Error (MSE)

overall. This may be because there are many occlusions in
the ’dino’ image, and thus, plane sweeping does not nec-
essarily perform the best. However, despite its strong per-
formance qualitatively, the run time is relatively high com-
pared to other methods, about 3x that of the epipolar plane
method and about 18x that of LSG.

Testing this out with the Lytro image from Stanford’s
Light Field Dataset (Table 4), it can be seen that the image
is not as visually appealing. There are some artifacts around
areas with more complex geometry, such as the wheels and
the tubular interior of the truck. This demonstrates that the
plane sweeping method may be best for smooth images and
if there are complex geometries in the image, the perfor-
mance decreases. In addition, the performance may break
down around small occlusions (as shown around the wheels
of the lego truck).

5.3. Epipolar-Plane and Fine-to-Coarse Refinement
Method

From the results, we can see from Table 3 that the depth
maps generated from EPI and Fine-to-coarse method have
a PSNR higher than LSG method’s but lower than Plane

Sweeping Method’s. On the other hand, the runtime is about
10 times higher than LSG but nearly half of plane sweeping.
This suggest that the EPI and Fine-to-coarse method is more
efficient and preserves the image quality at the same time.
Similar to the LSG method, the depth estimation seems to
rely on the features, which are the higher frequency in the
data. The Table 2 shows that most of the error are from
areas of background and with deeper area. This could be
the results of the fact that when I is down-sampled to a
very small dimensions, the depth bound strictly limit the
the potential values of d, and leads to a uniform estimation
of disparity. The general image quality looks good on the
table 1. However, for the Lego truck Lytro data in Table 4,
we can see that EPI1 is noisy but EPI2 is clear. This could
be due to the fact that the downsampled images are highly
effected by the noise or we should apply stronger Gaussian
Blur to avoid aliasing.

6. Conclusion and Future Work

In conclusion, the LSG seemed to perform fairly well for
the Heidelberg dataset and Stanford Light Field dataset and
was the fastest algorithm. Plane sweeping performed really
well for the Heidelberg dataset but poorly on the Stanford
Light Field dataset. This is also seen in the epipolar plane
method. Overall, if we look at run time and qualitative re-
sults from all the depth maps, LSG seemed to perform the
best across diverse datasets, although its results are not per-
fect.

If we had more time, here is what we would focus on:

1. Test out other types of datasets, where theres more
variation in illumination, fine detail, etc.

2. Test plane sweeping using different filters besides box
filter (such as bilateral filtering or median filtering)

3. Use confidence values from plane sweeping to create
more robust depth maps against occlusion

4. Fine-tune parameters in the epipolar method

Overall, the algorithms all performed relatively well
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Appendix

Overall, the work was distributed evenly amongst ev-

eryone on the team. Warren Cheng was responsible for
the LSG algorithm, putting together the poster, and writ-
ing the report. Linda Banh was responsible for the plane
sweeping algorithm, putting together the poster, and writ-
ing the report. Fang-Yu Lin was responsible for the epipolar
plane and fine-to-coarse refinement algorithm and putting
together the report.



