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e Motivation: Driving while fatigued is very dangerous and leads to 10-30% of road
deaths (Rios-Aguilar et al). Biometric indicators can be used to detect drowsiness in
drivers.

e Ocular indicators of drowsiness include blink rate, blink duration, and percentage of
eye closure (Ftouni et al).

e Heart rate variability is another useful indicator, which can be measured by analyzing
changes in RGB components of images of the face (Rios-Aguilar et al).

Stanford University



Eye Detection- Training for fisher image

Data Collection
= OpenCV to segment a bounding box around the eyes
= (1) 100 images of open and closed eyes taken at 5 different illuminations
Training
= (2) Global histogram equalization
= (4) Alignment to “good” image and crop

> Subsequent alignment to (3) meaneye
k Top 100 eigenimages
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Eye Detection- Testing

Data Collection
= (1) 100 total images of open and closed eyes

Accuracy
= 100% accuracy, but... a
= More spreading than training case 2
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Eye Detection- Demonstration
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General Heart Rate Procedure

o Detect face using Viola-Jones detector
o Extract cheek area as ROI
o Currently using dlib’s face landmark detector
o Computationally expensive, will try moving to a simple algorithm
using the face bounding box
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Heart Rate via ICA

= Separate color channels into independent signals

> In past experiments one of the signals was BVP
= Take FFT and look at magnitude to determine dominant frequency
= Tried bandpass filtering, looking at specific regions and averaging
= Trained on one video and kept unmixing matrix
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eart Rate via
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Heart Rate via ICA Results

= Very imprecise
> Measurement varies significantly for a steady video

» Standard deviation around 11 bpm for database videos and around 40
bpm for webcam
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Heart Rate via CHROM

e Temporally normalize RGB signals

o Assume a standardized skin-tone and project into plane without
specular reflection component

o Signal is defined as difference of chrominance signals
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Heart Rate via CHROM Results

Ground Truth: 70bpm
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Relatively decent results for both dataset and webcam, within 10bpm
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Conclusions

e Much more difficult than initially thought
e Originally planned for Android but canceled
o Despite many similar implementations heart rate was very difficult
o Current implementation cannot determine heart rate variability
o Eye detection effective but limited
o Requires training for individual users
e A good first step toward a drowsiness detector
o Goal was not to make a detector but to provide tools for it
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