Single Image Reflection Removal

Ishani Parekh Gaurav Agrawal

Goal: Reduce reflection artifacts in images captured by mobile cameras

References: Methods published in [1] (*LB14*) and [2] (*SK15*)

Datasets:

- → Images in SIR2 dataset [3]
- → Images used in LB14 and SK15 ([1], [2])
- → Mobile images captured by us
- → Synthetic images constructed by us

IQ Metrics: Visual inspection, Structure Index, Normalized Cross Correlation

[1] Y. Li and M. S. Brown. Single image layer separation using relative smoothness. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[2] Y. C. Shih, D. Krishnan, F. Durand, and W. T. Freeman. Reflection removal using ghosting cues. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3193-3201

[3] Renjie Wan, Boxin Shi, Ling-Yu Duan, Ah-Hwee Tan, Alex C. Kot. Benchmarking Single-Image Reflection Removal Algorithms. The IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3922-3930

SIRR Problem Formulation

- Reflection removal is a layer separation problem
 - \circ Image = T + R
 - \circ ~ Inherently ill posed with no single "right" answer
- Assume priors on statistics of T and R layers
 - \circ $% \left(Acts as regularization on the solution space \right)$
 - Image priors: gradient sparsity, GMM
 - T, R asymmetry: R smoothness, R ghosting
- Formulated as cost function minimization problem

LB14 (Li, Brown, CVPR 2014)

- "Relative Smoothness of R vs. T"
- Assume gradient sparsity for T component -
 - Estimate gradients using first order derivative filters
- Assume R to be smoother than T
 - Estimate smoothness using Laplacian
- Maximize joint probability P(T, R)
 - i.e. minimize negative log $(P_1(T) \cdot P_2(R))$
 - Solved iteratively using half quadratic separation method
 - Add range constraints to bound s.t. 0 <= T <= I

$$\sim P_2(x) = rac{1}{2\pi \sigma_2^2} e^{-rac{x^2}{\sigma_2^2}}$$

$$\min_{T}\;\sum_{i}\left(\sum_{j}
hoig(T*f_{j}ig)+\left((I-T)*f_{k}
ight)^{2}.\,\lambda
ight)$$

$$ho(x)=~\min\left\{rac{x^2}{k},1
ight\}$$

SK15 (Shih, Krishnan et al. CVPR 2015)

- "Ghosting Cues"
- Assume ghosting in R due to double reflections
- Assume 8x8 patch based prior based on GMM for T and R
 - 200 mixture components
 - Trained over 2M patches sampled from natural images
- Estimate ghosting kernel k
 - Use 2D autocorrelation of Laplacian
- Minimize sum-of-squared differences error
 - Augmented with joint probability P(T, R) under GMM prior
 - P estimated as sum of probabilities over all overlapping patches (EPLL)
- Solve iteratively using half-quadratic separation + L-BFGS

$$\min_{T,R} \left(rac{1}{\sigma^2} \|I - T - R \otimes k\|^2 - \sum_i \log(GMM(P_iT)) - \sum_i \log(GMM(P_iR))
ight)$$

 $I = T + R \otimes k$

Ghosting kernel

Results with LB14 (Relative Smoothness)

Τ

R

Results with LB14 (Relative Smoothness) (Contd..)

Results with LB14 (Relative Smoothness) (Contd..)

Ref: "SolidObjects/7" image from SIR2. 540 x 400 pix

Results with SK15 (Ghosting Cues)

R

Results with SK15 (Ghosting Cues) (Contd..)

Τ

R

Synthetic image constructed to demonstrate SK15

Challenges

- Optimization problems non-convex
 - Solved using iterative methods, variable time to convergence
 - \circ $\,$ Sensitive to initialization $\,$
- Optimization solved over entire image
 - \circ $\,$ Memory and computation quickly becomes prohibitive $\,$
- Must make assumptions about T and R
 - Unfortunately these assumptions aren't robust
 - SB14: R may be sharp and not diffuse
 - LK15: T may contain repeating features, ghosting in R may be minimal

Bad result with LB14 (Relative Smoothness)

R

Ref: "apples" image used by [1], 540 x 400 pix

Bad result with SK15 (Ghosting Cues)

÷

R

Run time of LB14 (Relative Smoothness)

- 9 images from SIR2 dataset
- MATLAB runtime on Linux
 workstation
 - 12 core Intel Xeon E5-1650 @
 3.60GHz
- Large image-to-image variation for a fixed size
- Large images will take several minutes to run
 - Upto 9 mins measured on 12 Mpix images

Run time of SK15 (Ghosting Cues)

- 9 images from SIR2 dataset
- MATLAB runtime on Linux
 workstation
 - 12 core Intel Xeon E5-1650 @
 3.60GHz
- Large image-to-image variation for a fixed size
- Large images will take several days to run
 - 70 mins measured on a 0.2 Mpix (400 x 540) image

SIRR on Multi-Mpixel images

- SK15 is too compute and memory intensive
 - Even 500 x 500 pixel image will take multiple hours
- LB14 can be run on larger images
 - But 9 minutes on 12 Mpixel image is still too large
- Ideas to speed up LB14
 - Run LB14 on downsized image; upsample R and subtract from full-res image to get T
 - Reduce the number of iterations; relax convergence criterion

Runtime Improvement

Runtimes on 6 test images of 12 MPixel each

	LB14 Runtime	With parameter Tuned LB14	With Downscaled	With Both optimizations		
	(Sec)	(Sec)	LD14 (Sec)	(SEC)	-	
Boat	61	9	16	3		Т
Cardash	150	75	33	16		
Fort	45	12	11	4		
Trees	214	71	47	5		
XKCD	489	44	97	11		
Whiteboard	493	48	97	12		
MATLAB runt	time on Linux wo	orkstation (12 core	Intel Xeon E5-16	650 @ 3.60GHz)	-	T *

MATLAB runtime on Linux workstation (12 core Intel Xeon E5-1650 @ 3.60GHz)

EE 368 SIRR

EE 368

SIRR

Ι

EE 368

SIRR

Next steps

- Measure image quality degradation
- Try other ideas to improve run time without quality degradation