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Abstract

Radar investigations of glaciers rely on accurate iden-
tification of layer features in radar survey images (radar-
grams). Traditionally, these features have been identified
(”picked”) manually or semi-manually. To improve the effi-
ciency and consistency of this picking process, we present
an automated method to identify the glacier surface and
glacier-bedrock interface in radargrams. This method iden-
tified 99.9% of surface layer points and 84% of bed layer
points within within 20 pixels of accuracy.

1. Background
In an era of higher temperatures and thinning ice sheets,

understanding Earth's polar regions is increasingly impor-
tant. To better predict the response of sea levels to this
change, many scientists have modeled glacier responses.
However, these models are poorly constrained because
of limited understanding of boundary conditions at the
bedrock of the glacier. The glacier’s basal properties (e.g.,
frozen bedrock, loose glacial till, thawed water) signifi-
cantly impacts that glaciers movement. For example, a
glacier on thawed water will slide over the bed layer, while
ocean water penetration will lubricate the glacier’s move-
ment.

To better understand subglacial conditions, researchers
have conducted thousands of kilometers of radar surveys
[3]. These surveys use synthetic aperture radar (SAR) pro-
cessing techniques to combine a sequence of radar returns
into a cross-section of the glacier along the survey track. An
example of such a radargram is shown in Figure 1.

Although these surveys have succeeded in mapping sub-
glacial topography, much work remains in understanding
englacial processes and subglacial conditions. One pre-
requisite for analyzing radar surveys is identifying features
such as the glacier surface, bed, and englacial layers from
the radargrams. However, identifying these features (often
referred to as picking) is time consuming and can require
hundreds of person hours, even with layer tracing GUIs de-
signed specifically to facilitate this task.

Figure 1. Cropped focused radargram of West Antarctica's
Amundsen Sea Embayment [3].

Previous work includes [1], which uses a horizontally
extended Prewitt operator to accentuate englacial layers.
However, the technique makes no provision for layers of
having returns of varying widths and powers. [5] describes
a wavelet transform to accentuate layers of varying widths,
as well as using a Hough transform for tracing layers. How-
ever, the Hough-transform method assumes slowly varying
layer slope, which is true for englacial layers but not for the
bed layer, which has sharp changes in layer slope due to to-
pography. [4] describes orientation-specific edge detection
and layer tracing techniques using rotated Gaussian filters.
This method also assumes parallel layers, and uses a com-
putationally intensive exhaustive search over layer slopes to
trace layers. Thus, [1], [5], and [4] are better suited to iden-
tifying englacial layers than the bed layer.

In this project, we combine and adapt methods from the
foregoing sources to identify the bed layer while maintain-
ing reasonable computational time.

2. Methods

Our layer detection pipeline consists of three stages.
First, we apply an edge-enhancement filter to intensify the
surface and bed. Using this edge-enhanced image, we then
select seed points by identifying maximum intensity values
along the range direction. Finally, we use the seed points
to guide layer-tracing. For each stage, we investigated dif-
ferent approaches and quantified each approach’s ability to
identify the surface and bed layers.



Figure 2. The Ricker wavelet has an effective support between
[−5a, 5a], where a is the wavelet scale parameter.

2.1. Edge enhancement

We initially explored gradient-based edge detection fil-
ters such as the Prewitt, Sobel, and Roberts filters. How-
ever, these detectors had mediocre results for this applica-
tion. Accordingly, we implemented edge enhancement us-
ing a sharpening filter, a 1-d Ricker wavelet transform, a
directional Gaussian filter, and a tophat filter to improve re-
sults.

2.1.1 Sharpening filter

First, the image was sharpened in order to improve subse-
quent edge detection. To sharpen the image, we took the
difference between the original image and the image af-
ter being filtered with a 2-d Gaussian filter. Applying a
sharpening filter before the wavelet transform improved our
layer-identification success rate.

2.1.2 Ricker wavelet transform

The Ricker wavelet takes the form ψ = 2

π
1
4
√
3∗a

∗ (1 −

( ta )
2) ∗ e−

t2

2a2 , where a is the scaling parameter and t is
the input domain. Figure 2 illustrates a Ricker wavelet with
a scale a = 1. Convolving the 1-d Ricker wavelet ψ with
a range return (one column of the radargram) effectively
performs horizontal edge detection. This is because the
Ricker wavelet (which can be approximated by a difference
of Gaussians) is effectively a band-pass filter for medium-
frequency components.

The filter accentuates peaks and flattens monotonic
slopes. The filter has the greatest response to a peak when
the scale parameter of the peak a matches the peak’s width.
The surface layer has a consistent peak width because it
is a consistent distance from the radar and doesn’t expe-
rience any englacial losses. In contrast, the bed layer’s

Figure 3. Wavelet transform of one range column, with wavelet
scale a on the vertical axis and range bin number on the horizontal
axis. Color scale shows more positive response in yellow, more
negative response in blue, medium response in green.

power varies significantly depending on depth. The bed
layer’s width is proportional to depth, but also depends on
the bed’s roughness and whether other structures (e.g., ac-
cretion plumes) are present between the bedrock and the
ice. Thus, it is beneficial to use a variety of scales to de-
tect the bed. Figure 3 demonstrates the response of a single
range line to the wavelet transform performed at a range of
scales between a = 10 and a = 20. A variety of scale
ranges were tested. The foregoing range was used because
it preferentially enhanced the surface and bed layers relative
to englacial layers. This is because englacial layers have
narrower peaks than the bed and surface layers, so exclud-
ing scales a < 10 attenuates the englacial layers’ response.
Other wavelets such as the real-valued Morlet are discussed
in [5], but the authors find that the Ricker wavelet performs
best for identifying peaks corresponding to layers.

An example output from the Ricker wavelet filtering pro-
cess is shown in Figure 3. The strong response on the left
corresponds to the surface layer, and the strong response im-
mediately to the right corresponds to the bed layer. To pro-
duce a column of the transformed image, the responses are
summed across scale space. This process is then repeated
for each column, thereby producing the edge enhanced im-
age in Figure 4.

2.1.3 Directional Gaussian filters

[4] describes using directional Guassian filters for edge de-
tection. In this approach, we applied a 2d Gaussian filter
with σx > σy to the image and stored the result. The Gaus-
sian filter was then rotated five degrees and once again ap-
plied to the image. This process was repeated until the filter
had rotated a full 360◦ and each filtered image was stored.



Figure 4. Sum of images produced by filtering sharpened radar-
gram with many scales of Ricker wavelets.

Figure 5. Result from filtering the radargram with various direc-
tional Gaussian filters and taking the maximum response at each
pixel.

The pixel values resulting from each Gaussian filter were
compared, and the final image was created by taking the
maximum value for each pixel across all filtered images.
An example output from this approach is shown in Figure
5.

The motivation behind this approach was its ability to en-
hance any edge in the image regardless of orientation. This
was appropriate for the bed detection in particular, as the
edge orientation could vary drastically along the bed. How-
ever this method did not perform well, likely due to the na-
ture of the noise present in these images. Because strong
point reflectors produce reflection hyperbola over dozens
of pixels, the directional Gaussian filters also enhanced the
noise in the radargrams and resulted in a decreased success-
ful identification rate. Another primary drawback to this
method was the computational time required, as many large
Gaussian filters had to be applied across the entire image.
This resulted in the Gaussian filter approach taking almost
10 times as long as our other methods. A potential alterna-
tive to this implementation would be to use steerable filters,
which would reduce computational time and potentially im-
prove results [2].

2.1.4 Morphological tophat filter

As pre-processing for Dijkstra’s algorithm-based layer trac-
ing described in section 2.3.2, we applied the morphologi-
cal tophat filter, which takes the morphological opening of
the image using a circular structuring element and then sub-
tracts the result from the original image. This filter attenu-
ates non-layer pixels, thereby preventing these pixels from
being selected in the Dijkstra’s algorithm-based layer trac-
ing. An example output from this filtering process is shown

Figure 6. Output from the morphological tophat filtering used as
input to Dijkstra’s algorithm.

in Figure 6.

2.2. Seed point selection

We performed 1-d peak finding along each column of
the edge enhanced image, particularly the wavelet trans-
formed image shown in Figure 4. The identified peaks were
filtered to remove subsidiary peaks having a prominence
of less than 10% of the intensity of the maximum peak.
A peak’s ”prominence” measures the peaks minimum rise
above adjacent local minima. The remaining peaks were
then sorted by intensity, with the strongest peak correspond-
ing to the surface layer. Any peaks within a threshold num-
ber of vertical pixels from the surface layer were removed.
The threshold 100 pixels worked well because this was the
minimum distance between the surface layer and any other
distinguishable layer through the radargrams. The strongest
of the remaining peaks was selected as the bed layer. The
seed points detected from the wavelet-transformed image
are shown overlaid on the original radargram in Figure 8.

This approach worked well when the bed was near the
surface. However, as the bed deepened, the signal-to-
noise ratio of the bed diminished due to geometric spread-
ing losses and englacial attenuation of the radar signal.
Even though the wavelet transform preferentially enhances
the wide bed signal over narrow englacial layers, strong
englacial layers tended to have stronger responses than the
bed when the bed dropped 1000 pixels (3000 m) below the
surface, or when the bed was less reflective (e.g. due to
increased roughness).

Following-peak detection, small gaps in the surface and
bed were filled with a 5-point median filter. The median fil-
ter also removed outliers. The median filter was sufficient to
remove virtually all outliers and gaps for the surface layer,
but it was insufficient for removing outliers in the bed layer.

To further remove outliers, we performed morphological
closing on a binary image with seed points represented as a
1 and all other points represented as a 0. This step removed
all seed points that were not connected to at least four other
seed points by edge or by vertex, which eliminated most
spurious points that were not a part of the surface or the bed
and improved the bed detection performance.



Figure 7. Peak detection along one column of the wavelet-
transformed image. Detected peaks having a minimum height and
prominence are marked in black.

Figure 8. Seed points of surface and bed layers overlaid on original
radargram.

2.3. Layer tracing

Using the seed points, the last stage in our pipeline traces
the surface and bed layers to fill in columns without seed
points and to ensure all picked points lie within a certain
distance of their neighboring picked points. We applied two
approaches including a local max search and Dijkstra’s al-
gorithm.

2.3.1 Local maximum search

The most successful approach we implemented for layer
tracing was a local search for maximum intensity values in
the wavelet-transformed image. To determine where to start
the local maximum search, we performed region labeling
on the seed points. The region with the greatest number of
surface seed points (i.e. the region where the most surface
seed points were connected by edge or by vertex) was taken
to be the starting region for the surface tracing; similarly,
the region with the greatest number of bed seed points was
taken to be the starting region for the bed. From the end pix-
els in the starting regions, we searched in adjacent columns
within a +7px/-7px vertical range for the maximum inten-
sity value in the filtered radargram. The maximum intensity

Figure 9. Layers traced by local adjacent maximum search.

value within this search range was appended to the initial
region as a surface or bed point. This process was then re-
peated using the newly-chosen end points as the start values
to define the search region. When the search encountered a
seed point in a search column, it stopped its search for the
maximum value in the search range and instead chose the
seed point. This process, extended to all columns in the im-
age, produced one surface and one bed index for each col-
umn. The layers we traced using this algorithm are shown
in Figure 9.

2.3.2 Dijkstra’s algorithm

We also tested Dijkstra’s algorithm to trace between the
seed points. Using regularly spaced seed points, we used
the algorithm to find the shortest path between two seed
points. By tracing outwards along the set of nodes whose
shortest path from the starting seed point is known, even-
tually every pixel along the shortest path will be reached.
The weights used to determine distance are a weighted sum
of different metrics such as length of the edge, location of
node in relation to start, and end seed points and intensity
of node compared to neighboring nodes. In other words,
the algorithm favors taking the geometrically shortest and
brightest path. To improve performance, only intensity val-
ues> 0.35∗maximum pixel intensity were allowed for trac-
ing. However, this method did not perform as well as we
expected. We believe this is because the bed layer often has
jagged edges and quick changes of slope. Dijkstra’s algo-
rithm smoothed out this bumpy bed layer too much, result-
ing in a low success rate. The bed layer tracing from Di-
jkstra’s algorithm is shown in Figure 10. It should also be
noted that Dijkstra’s algorithm stores a queue of all paths
searched so far, resulting in significantly higher memory
usage than other layer tracing algorithms we considered.
Our implementation (porting C++ code into MATLAB) was
constrained to processing about 10% of the image width at a
time due memory limits. Although this particular limitation
could be fixed with a pure C++ implementation, it doesn’t
fix the algorithm’s inherently larger memory footprint.

3. Bed and surface identification results
To test the algorithm, we used radargrams obtained by

the University of Texas at Austin and the British Antarc-



Figure 10. Bed layer as identified by Dijkstra’s algorithm.

tic Survey during the 2004/2005 survey of West Antarcticas
Amundsen Sea Embayment [3]. We tested on five focused
radargrams, each of which surveyed about 270km in the az-
imuthal direction with a spacing of 17.5m. The image’s
vertical dimension corresponds to the range direction, with
each pixel having a spacing of 3m. These radargrams were
available in log-detected magnitude form (analogous to a
grayscale image), and already had human-verified bed and
surface picks identified against which we compared the out-
put of our algorithm. In testing our pipeline, we tested only
picks that had >10dB SNR, and did not include floating ice
in the images.

We used successful surface and bed identification per-
centages as a performance metric. For each column, the
identification of the surface and bed pick was declared a
success if it lay within a threshold number of pixels from the
reference, human-selected picks. Since the surface and bed
layers have vertical widths of about 20px in flat regions, but
the vertical width of the bed can approach 50px over a hori-
zontal run of 10px, we used two different thresholds of 20px
and 50px for all methods we investigated. The reference
picks vary within a 10px range vertically, so we selected the
20px range as the smaller threshold within which our results
effecitvely matched the reference picks. We used 50px as
an upper threshold because existing processing tools within
Dustin Schroeder’s Radioglaciology research group are ro-
bust to pick errors of up to 50px.

It should be noted that the previous human-verified picks
were chosen to identify the bed layer onset (leading edge of
bed layer return). For purposes of characterizing basal prop-
erties based on radar return power, the pixel with the max-
imum intensity value in the layer is of most interest. This
accounts for some of the differences between the existing
labels and the picks produced by our automated method. To
demonstrate the sensitivity of the success rate to the pixel
threshold, Figure 11 plots the success rate against pixel
threshold. The success rate is relatively insensitive to in-
creasing the threshold above 10px for the surface and 50px
for the bed.

4. Detecting internal layers

The seed selection described in section 2.1.2 has a use-
ful extension for detecting internal layers. The peaks re-

Figure 11. Success rate plotted against pixel threshold.

Figure 12. Internal layers identified by filtering non-surface and
non-bed peaks are plotted in yellow. Surface pick plotted in blue.

maining after selecting the surface and bed are filtered to
remove any peaks within a threshold vertical distance from
the identified surface and bed (as identified by layer tracing
in Section 2.3). The remaining peaks’ intensities were fit to
a log-normal distribution. When comparing the cumulative
distribution functions (cdf) of the remainining peaks inten-
sities versus the log-normal fit, it is apparent that there is
a fat tail comprising about 30-40% of the peaks which are
more frequent than would be predicted by the log-normal
fit distribution. Thus, we set an intensity threshold at the
point above the median where the empirical cdf exceeds the
log-normal cdf, as suggested by [5]. When the peaks with
intensities above this threshold are plotted on the original
radargram as in Figure 12 we see they correspond well to
internal layers.

[5] describes a local Hough transform-based layer trac-
ing procedure for filling in gaps in the internal layers. Al-
though we considered implementing this procedure, we ul-
timately focused on improving bed layer tracing because it
is more applicable to the Stanford Radioglaciology group’s
current research.



Method
Surface Pik
within 20
pixels

Surface Pik
within 50
pixels

Bed Pik
within 20
pixels

Bed Pik
within 50
pixels

Processing
time per
column

(A) Peak detection on
radargram 99.9% 100.0% 40.2% 57.5% 0.03ms

(B) Local adjacent max
tracing on Gaussian
filtered radargram

99.31% 100.0% 47.57% 59.1% 36.7ms

(C) Peak detection on
wavelet tx’d radargram 99.8% 100.0% 82.1% 91.2% 3ms

(D) Dijkstra’s
algorithm-based tracing - - 18.3% 53.0% 3.6ms

(E) Local adjacent
max tracing on output of (C) 99.9% 100.0% 83.73% 93.69% 3.6ms

Table 1. Results.

5. Future Work

5.1. SAR processing techniques to remove internal
layers

Recent work by Davide Castelleti, Dustin Schroeder, and
others (in prep) approaches focused synthetic aperture radar
processing as an optimization problem. Standard focused
SAR processing assumes that layers are either flat specu-
lar reflectors or isotropic reflectors. However, most inter-
nal layers have a gradually varying slope slightly deviat-
ing from the horizontal assumption. Given a layer’s slope,
phase differences due to the slope can be corrected, increas-
ing the horizontal distance over which radar returns can
be coherently summed, thereby improving the SNR of the
layer. Castelleti et al. use optimization techniques to find
the slope of each layer by maximizing the layer power.

This focusing technique can be hijacked to improve de-
tection of the bed. Unlike internal layers (which are mostly
specular reflectors), the bed is an isotropic reflector. In other
words, the bed reflection power is insensitive to a phase cor-
rection based on bed slope; internal layer power is sensitive
to such a slope-based correction. Thus, focusing the radar-
gram based on a deliberately incorrect layer slope (e.g., be-
tween 45 and 90 degrees from horizontal) would drastically
reduce internal layer power compared to bed layer power.

The techniques described herein sometimes confuse the
bed layer with near-surface internal layers, particularly
when the bed layer has low SNR. This confusion would be

prevented if the input radargram had significantly dimin-
ished internal layers. Thus, applying a modified version of
the SAR processing technique of Castelleti et al. would pro-
duce a radargram image that would improve our image pro-
cessing performance.

5.2. Machine-learning informed layer tracing

The most successful layer tracing technique we used was
selecting the local adjacent maximum. This approach works
well for filling in small gaps between seed points as long as
the underlying image (typically an edge detected and sharp-
ened image as described in Section 2.1.2) has a bed layer
with sufficient power. However, the bed layer experiences
significant gaps where the power drops significantly over a
horizontal stretch of 10-20 pixels, followed by a return of a
strong bed signal, often displaced up or down by 25-50 pix-
els. These gaps in the bed signature tend to stump the local
max tracing we described.

A more sophisticated layer tracing would consider pixels
over a local region, including both traced pixels behind and
untraced pixels ahead. The vertical and horizontal dimen-
sions of the region are difficult to set. When the bed is in
a shallow region, a narrow vertical window is advantageous
because there are likely adjacent internal layers that could
cause confusion. When the bed is deeper, a taller vertical
window would be more advantageous. Other factors affect-
ing the vertical window size include the slope of the already
traced layer. Attempting to identify a useful set of search



region dimensions and a set of thresholds for using differ-
ent search region dimensions is a difficult, error-prone task
that would be prone to overfitting the dataset.

Instead, it would be better to use supervised machine
learning techniques to adaptively determine the search re-
gion dimensions based on local features. Such features
could include (i) the vertical displacements and (ii) powers
of preceding traced points; (iii) the number of seed points
identified in un-traced columns; (iv) the slope of preceding
traced points; and (v) the peak width and peak prominence
of traced points and un-traced seed points. The machine
learning algorithm could attempt to maximize the likelihood
that the search region contains the ”correct” bed pik (using
the reference piks as training data) by varying the search
window. This search window would then be used to pick
the bed based on the max within the region.

Alternatively, the machine learning algorithm could at-
tempt to directly pick the bed based on (i) any of the pre-
ceding features, (ii) the powers of candidate pixels, (iii) the
edge-detected powers of candidate pixels, or (iv) a measure-
ment of smoothness or continuity among selected pixels.
This might be implemented as supervised learning, a neu-
ral network, or an optimization function (that maximizes an
objective function maximizing traced power and minimiz-
ing discontinuities).
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Appendix: Division of Labor
Andrew Hilger: implemented and optimized Ricker

wavelet edge enhancement; developed seed point detection
following Ricker wavelet; implemented algorithms for se-
lecting seedpoints for englacial layers; organized dataset
and created testbench; future work section.

Sarah Hooper: implemented the rotating Gaussian fil-
ter edge enhancement method; tested basic edge detectors
(central difference, Sobel, Roberts) for edge enhancement
stage; developed local adjacent maximum layer tracing.

Cedric Yue Sik Kin: tested Prewitt edge detection ap-
proach to layer identification; wrote code to use morpholog-
ical tophat filter for edge enhancement; implemented Dijk-
stra's algorithm.

All: created poster; wrote paper sections corresponding
to above division of labor.


