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Abstract—1In this project, we present a system which pro-
cesses recorded stereo smartphone videos to estimate the 3D
trajectory of a tennis ball as it moves during play. Given
recorded video footage collected by two smartphones mounted
on tripods, our system combines various image processing
techniques to interpret the video frames and reconstruct the ball
trajectory. To do this, our system locates point correspondences
of the court in image space, determines the camera locations
relative to a globally-defined origin, and estimates the ball
location using multiple-view geometry and state estimation
filtering. To this end, we employ image processing concepts
including image segmentation, morphological image processing,
the Hough transform, moments analysis, blob analysis, camera
calibration, and multiple-view geometry.

I. INTRODUCTION

Tennis is a sport which is enjoyed by millions of people
around the world. For players practicing to improve their
skills, useful information is gathered from studying the 3D
trajectory of the ball as it moves during play. Measuring
this trajectory typically requires highly-specialized recording
equipment and careful calibration. At the professional level,
the Hawk-Eye system is employed for line calls and replay
analysis. While this system is too expensive to setup for
most recreational use, a less expensive system with similar
functionality and potentially lower accuracy is desirable. In
our project, we make trajectory estimation more consumer-
accessible. We present a ball trajectory-measuring system
which relies only on two smartphone cameras and our own
algorithm for automatically interpreting the recorded stereo
footage. Given two recorded views of the tennis game, our
system outputs frame-by-frame data including the balls speed
and estimated 3D position with an average error of 0.5m.
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II. RELATED WORK

Several papers have been written about algorithms and
techniques to track a tennis ball in videos, both in post-
processing and in real-time. Qazi et al. developed an al-
gorithm for detecting and tracking a tennis ball in videos
of tennis matches filmed from a quadcopter [1]. Lyu et al.
developed algorithms for stabilizing videos and use a method
called random forest segmentation for extracting possible
ball locations in the image [2]. Archana et al. propose a new
algorithm for ball detection that utilizes frame difference,
logical AND operations, thresholding, and dilation to track
the motion of the tennis ball in broadcast tennis videos [3].
Yan et al. use motion segmentation and foreground blob
detection to determine probable locations for the tennis ball,
modeling the ball with a LTI-system and using a particle
filter to determine the most probable location for the ball
given the images [4]. Ekinci et al. process videos from a
fixed camera to extract the background of an image and
generate ball location candidates, then use a Kalman Filter
to narrow down the candidates to the most probable ball
location [5]. Yu et al. use limited visual cues to track the
tennis ball more accurately in broadcast tennis videos and
described an algorithm for inferring ball position based on
previous and later frames [6].

III. IMPLEMENTATION
A. Overview

Our system is implemented as a computer program that
accepts synchronized stereo video footage as input and
outputs the approximated speed and 3D position of the
tennis ball at each frame of the videos. For previewing the
outputted trajectory, we provide a visualization tool which
renders split-screen videos showing the reconstructed ball
path annotated on the stereo input frames, as well as two
computer-generated plots: a top-down orthographic view, and
a perspectivized 3D plot.

B. High-Level System Design

Once provided with synchronized stereo footage of a
tennis game, our system acts in a pipeline-like manner,
passing intermediate results from one stage to the next. The
first stage of the pipeline is frame segmentation, where the
corners of the court and a set of candidate ball positions
are found. Next, the program determines the position and
orientation of the camera in a 3D coordinate system whose
origin lies at the center of the court. This is done using
the court’s four corners as point correspondences between
image and world space. With knowledge of the camera



position and orientation, the system then calculates nearest
ray-intersections using all possible combinations of candidate
ball positions from the two cameras. Finally, the convergent
near-intersection points are passed through a Kalman Filter
to estimate the true ball trajectory from the set of candidate
ball positions, and the estimated trajectory is written to a
CSV file.

C. Data Collection

In our experiments, we collected video footage manually
using two smartphones with the same camera: an Apple
iPhone 6 and an Apple iPhone 6 Plus. Each camera is set to
film at 60fps and 1920 x 1080 pixels resolution. We filmed
20 groundstrokes in stereo at the Taube Tennis Center at
Stanford in clear-skied, daylight conditions. We positioned
the two smartphones at elevated locations in the stadium’s
seating area and aligned each camera to a respective sideline
of the court. Each camera was aimed toward the center of
the court as shown in Figure 1, with the entire court in
view of the camera to ensure that the court segmentation
succeeded. To simplify synchronization, we filmed a single
video continuously from each camera during the session.

Fig. 1. iPhone camera setup

After filming, we manually cut the video into clips with
one hit ball per clip. For each test hit, the player held the ball
out with the non-racquet hand at approximately waist height
and released the ball so that it bounced on the court and
rose back up before being hit with the racquet. We trimmed
the clips to start with the first frame where the tennis ball
bounced before being hit, and end when the ball either left
the frame or impacted the rear wall. The first frame of a clip
from each of the cameras is shown in Figure 2.

Fig. 2.

Temporal synchronization of video clips

D. Camera Calibration

For accurate 3D position estimation, our system requires
knowledge of the intrinsic camera parameters, including

focal length, optical center, radial distortion coefficients, and
tangential distortion coefficients. To estimate these parame-
ters for our smartphones, we record video of a checkerboard
pattern calibration target shown in Figure 3 from a variety of
different angles and across various locations in the field of
view of the camera. We extract several representative frames
from each calibration video and use these as inputs to the
MATLAB Camera Calibrator application, which outputs each
of the parameters required by our system.
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Fig. 3. Camera calibration target

E. Court Segmentation

To solve for the camera’s position and orientation rela-
tive to the world coordinate frame, our program must first
estimate the position of the court in image space. In our
implementation, we focus on searching the input frames for
the court’s four corners — where the four outermost white
lines meet. These four pixel locations form a unique and
complete description of the court’s position in the frame.

We assume that the center of the court (where the net
meets the center service line) lies approximately at the center
of the frame. Under this assumption, we can estimate the
dominant color of the court using a crop section. This is
done by extracting a rectangular window from the center
of the frame and computing an HSV histogram to find the
peak color intensity as seen in Figure 4. In our footage, the
dominant court color is a dark shade of blue.

Fig. 4. A rectangular window is cropped from the center of the image and
used to find the dominant color which is then considered the court color



With the dominant color extracted, we perform HSV
thresholding on the image to obtain a mask containing only
regions where the color nearly matches the dominant court
color. This is displayed in Figure 5. Since there may be other
court-colored objects in the scene, such as additional courts
in the background, we filter out smaller regions using a series
of morphological operations and small-region removal. The
result is a mask which consists of the approximate closed
area occupied by the court in the frame as depicted in Figure
6.

Fig. 5. Unfiltered HSV mask of the court

Fig. 6. Filtered HSV mask of the court

Next, canny edge detection is applied to this mask to form
an outline of the court (Figure 7). Using the Hough trans-
form, we identify the prominent lines in the outline (Figure
8), and record all intersections that occur between the Hough
lines in a separate mask. This mask is dilated substantially, so
that clusters of intersections become connected components.

Fig. 7.

Canny Edge Detection

Then, the four largest connected components in the mask
are taken to lie at the center of the court’s four corners. Their

Fig. 8. Hough transform lines

centroids are calculated, and the resulting four X-Y pixel
coordinates are sorted by their approximate relative locations.
The final result is displayed in Figure 9.
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Fig. 9. Final court corners detected

F. Ball Segmentation

Ball segmentation is done by combining several different
image masks. All image masks use frame differences be-
tween the current frame and the frame 5 frames ahead. Five
frames ahead was chosen so that the future ball has very
small probability of overlapping with the ball in the current
frame, thus enabling frame differences to be used. The first
mask takes both frames in the RGB space and converts them
into HSV space. Each frame in HSV space is thresholded to
create a binary mask based on ball color, where the threshold
is approximately the mean HSV value for the color of a
tennis ball. To reduce the false positives generated by the
background of each image, a difference is taken between
successive frame masks. An XOR can be performed to get
rid of any common background pixels, and an AND with
the original HSV mask will return only the ball in the first
frame while maintaining the cleared background.

The second mask takes both frames in the RGB space
and computes the difference of the frames in the RGB
space, which is thresholded to create a new binary mask.
The eccentricity of the large difference regions is then
analyzed to determine approximately ball-shaped blobs of
reasonable size. The remaining blobs are additionally filtered
by an AND with a weak HSV mask so that only the blob
corresponding to the ball in the original frame remains.

The third mask considers cornerness. Frames in RGB
space are input and the difference is calculated. The dif-



ference is then converted to grayscale and the weak HSV
mask is ANDed to remove large chunks of the background
and the second ball. Harris cornerness is then measured on
the remaining differences and the binarized output is used as
a third ball mask.

Combining the outputs of the three masks, we consider
pixels that appear in at least two of the three masks to be
a ball candidate pixel. We refer to the final, combined mask
as the frame’s “ball segmentation mask”. An example of a
ball segmentation mask is depicted in Figure 10. The lone
point just to the right of the center corresponds to the true
ball, in this particular case.

Fig. 10. Ball segmentation mask

G. Ray Intersection

Using the camera calibration parameters and pixel coordi-
nates of the court corners, a linear pinhole camera model and
court plane homography mapping between pixel coordinates
and world locations is created for each camera. We define
our world coordinate system with a Y-up convention, setting
the origin at the exact center of the court. We let X and
Z lie the plane of the court. The rays passing through
the centroid of each ball candidate in the ball mask are
produced and then intersected (see Figure 11). By comparing
every combination of camera-to-ball rays from each of the
stereo frames, we check the validity of a ball candidate by
calculating the world location of ray-pair intersections and
assign a confidence to a pair of convergent rays by measuring
their nearest-intersection distance. These metrics are more
closely considered in the state estimation filtering described
in the next section.

H. State Estimation

The final step takes ray intersections and determines the
most likely ball position in world coordinates and real-world
ball velocity via a Kalman filter with unknown correspon-
dence. The Kalman filter is intended to utilize system model
knowledge and measurements with the understanding that
both are imperfect by combining them in a two-step predict-
update process. If model predictions and measurement up-
dates match closely, then the filter is more certain that the
estimate of the current state is more likely to be correct. Un-
known correspondence means that in performing the Kalman
filter update step, the exact measurement corresponding to
the state that the filter is trying to estimate is unknown.
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Fig. 11. Depiction of triangulation process for ball localization in world
coordinates via ray intersection

The state for this Kalman filter is the ball XYZ position
and XYZ velocities. The Kalman filter state is initialized to
all zeros. Knowing this is incorrect, but not knowing the
exact initial location of the ball, we can fix this and ensure
the Kalman filter converges by setting the initial uncertainty
(state covariance matrix), to be very large.

Since the state is ball position and velocity, we can devise
a very simple linear physics system as the state prediction
model. We know the mass of the ball and acceleration due
to gravity (acting in the -Y direction). There is technically
also a force and acceleration in the X and Z directions in the
moment at which the player hits the ball. However, from our
current image segmentation, there is no way to determine
time at which the ball is hit and the input force or direction
corresponding to this hit. So, for simplicity, we can treat this
as a point-mass adhering to just gravity and assume constant
X and Z velocity after the ball has been hit. The basic physics
equations are listed in Equation 1. In these equations, g
represents acceleration due to gravity and At is the time
between frames so 1/framerate. This can be rewritten as
single linear equation with a state vector as seen in Equation
2. x; € RO is the state vector where XYZ position and XYZ
velocity is stacked respectively. w; is model noise which
is assumed to be normally, independently and identically
distributed at each time step. Equation 2 forms the basis
of the prediction step for the state in the Kalman filter.
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The measurement model assumes measurement of the
partial state directly. Specifically, a measurement is assumed
to directly measure ball XYZ position. The measurement
model equation is expressed in Equation 3 where yo, 1,
and y, correspond to measured XYZ position respectively,
and v; is measurement noise also assumed to be normally,
independently, and identically distributed. Ray candidates are
pruned initially based on ray intersection distance (the closest
distance between the rays). We use this threshold value as
an estimate for measurement noise. We additionally prune
rays that are too far out of the court range in the XY
and Z directions because those points are probably noise
instead of a ball in play within some proximity of the court.
However, with each set of ray intersections, the filter still
receives multiple measurements. From this set, at most only
one measurement corresponds to the measurement of the ball
location.
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Often, correspondence is determined by the minimum
Mahalonobis distance which scales the L2-norm of the
difference between state estimate and measurement by the
covariance matrix. However, for this project, measurement
correspondence is is based on a series of cases. Initially
the ball location is guessed, so any measurements near the
ball estimate are probably not the ball. This is why we do
not use the Mahalonobis distance. Instead, if the uncertainty
measured as the Frobenius norm of the covariance matrix is
very large, then the Kalman filter update is performed on the
measurement with the smallest ray intersection distance. This
is most likely to be a valid point that appears in both images,
and ideally, only real balls produce valid ray intersections and
move in such a way that follows the basic physics model.

As it turns out, often the moving player also produces
a number of valid ray intersections, but these may not
necessarily move in the pattern of the ball. This is an issue

particularly if the frame does not pick up the real ball among
the set of candidate measurements. To get around this, if the
uncertainty is small enough, then the Kalman filter assumes
the current estimate of the state is close to correct. So, the
update considers the measurement closest to the predicted
ball location for that time step. If this measurement is still
too far away from the predicted ball location, then it is
considered invalid and the update step is skipped under the
assumption that no measurements of the ball were actually
received. This case outputs the predicted ball location as
the current state estimate. The final case for determining
correspondence aims to fill the gap between having high
and low certainty in the ball location. For any case where
certainty is not small enough to more fully trust the current
state estimate but not large enough to consider the state
estimate completely wrong, the Kalman filter chooses the
measurement that minimizes the uncertainty as the most
likely ball measurement.

IV. RESULTS
A. Court Corner Location Accuracy

To test the court corner-finding stage, we collected addi-
tional images of tennis courts from the web. These images
were deemed appropriate tests for our algorithm, since they
were captured in evenly-lit environments and with the entire
court in frame. Figure 12 shows the complete test set used
in our experiments, with the outputted corner locations
superimposed as crosshair markers.

Fig. 12. Complete image set for testing corner location accuracy

In all cases, the court’s corners are correctly identified,
but always with some small positional error. For these tests,
we outputted the frame with crosshairs marking the court
corners so that the accuracy could be inspected. Several
zoomed-in examples of this can be seen in Figure 13. Using
manually-determined ground truth of true corner positions,
we recorded the image-space distance error of the pixel
positions outputted. For each input image, we report the
average absolute error over the image’s four detected corner
locations in Table I.



Fig. 13. Inspecting court corner accuracy with crosshairs

TABLE I
POSITIONAL ERROR OF COURT CORNER LOCATIONS IN PIXELS

Test Number  Input Resolution (px)  Average L2 Error (px)
6.6

1 916x558

2 1920x1080 13.7
3 768x570 35

4 1000x666 6.9

5 1630x808 12.3
6 1564x702 49

B. Ball Tracking Accuracy

Since the ball-segmentation step produces a variable num-
ber of candidate ball positions, the ray-intersection step also
produces a number of candidate world positions for the ball.
Ideally, we would see exactly one 2D candidate ball position
in each mask, and these positions would form two rays in
world space that would converge to an exact point. Since this
is not the case, it is interesting to study the actual number
of candidates outputted in each step.

In our experiments, we observe that ball segmentation on
a single frame produces an average of 8.5 candidate ball
positions per frame. A histogram showing the number of
such positions outputted over the course of a test video is
shown in Figure 14.

The vast majority of the 2D ball candidate pairs are filtered
out because they form ray pairs that are considered too
divergent. While ideally there would only be one convergent
pair of rays, oftentimes we observe many. Figure 15 shows
the number of 3D ball candidate positions we observe over
the course of a test video. 40.2% of the time, we observe
exactly one 3D ball candidate, while 6.9% of the time, we
observe zero candidate positions. In all other frames, we
observe multiple candidates. Fortunately, there is sufficient
useful information for the Kalman filter to recognize the true
location of the ball (and to predict its position when the ball
is not found).
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Fig. 14. Histogram showing the number of ball positions found during
image segmentation. On average, a mask will contain 8.5 candidate ball
positions per frame.
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Fig. 15. Histogram of number of convergent ray intersections passed into
the Kalman filter per frame

C. Ball Position Estimation Accuracy

To evaluate the accuracy of our 2D-to-3D spatial esti-
mation, we conducted 10 tests where we fixed the ball at
various known positions around the court and began filming.
As ground truth for these positions, we used standard tennis
court dimensions. By comparing these known positions with
our own estimated 3D position, we recorded the error for
each test position in Table II. Note that our system performs
worst in the Z direction.

TABLE II
POSITIONAL ERROR IN BALL LOCATIONS IN METERS

Test Position X Error Y Error  Z Error L2 Error
corner 1 -0.16 0.12 0.85 0.87
corner 2 0.07 0.12 0.50 0.52
corner 3 0.09 0.06 0.39 0.41
corner 4 -0.02 -0.02 0.10 0.10

left net post -0.19 0.15 0.82 0.85

right net post 0.21 0.20 0.79 0.85

net center -0.06 0.28 0.60 0.67
court center -0.06 0.05 0.44 0.45
rear center mark -0.08 0.12 0.47 0.49
front center mark 0.05 -0.02 0.15 0.16
Maximum Error 0.21 0.28 0.85 0.87



D. Qualitative Results

In order to visually evaluate our court and ball segmen-
tation, we display each frame of the video and superimpose
markers on the court corners and the ball. We display each
frame in succession and leave the markers for the ball in
previous frames so that the path of the ball is clear in the
video. In Figure 16 below, the corners of the court are marked
with red circles and the sequential positions of the ball are
marked with pink circles. As can be seen in the image below,
our court detection algorithm correctly identifies the corners
of the court and the ball detection algorithm tracks the path
of the ball with sufficient accuracy for visually analyzing the
shot.

Fig. 16. Court and ball segmentation in video

In order to qualitatively evaluate our conversion from pixel
to world coordinates, we create a two-dimensional plot of the
path of the ball as it would be seen from a top-down view of
the court and visually compare it to the path of the ball in the
video. In Figure 17 plotted below, the sequential positions
of the ball are marked with pink circles.

Fig. 17. Two-dimensional path of the ball

In addition, we create a three-dimensional scatterplot of
the position of the ball in world coordinates. One circle is
plotted for the position of the ball in each frame of the video,
so the plot below in Figure 18 shows the path of the ball
throughout an entire clip. As can be seen in the plot below,
our algorithm produces a clear and reasonable path of the
ball in three-dimensional world space.
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Fig. 18. Three-dimensional path of the ball

V. DISCUSSION
A. Ball Segmentation Difficulties

One of our biggest challenges was consistently producing
a noise-free ball pixel location. Despite trying and combining
several image segmentation techniques, we still could not
consistently produce a reasonably noise-free mask for the
ball. Unfortunately, this step is fairly crucial in actually
determining ball location. Ideally, if the ball is consistently
identified in both frames as the only object of interest, then
the ray intersection could be taken as a known measurement
of the ball instead of unknown, and the Kalman filter
performance would greatly be increased because measure-
ments could be taken as known correspondences instead of
unknown correspondences.

Within this step, one of our biggest challenges was that
a moving player often produced several of the valid ball
candidates. For example, the players hand moving to hit the
tennis ball appears to follow ball-like trajectory and produces
significant differences in the frame difference algorithm used
to segment the ball.

B. Possible Improvements

As a future improvement, since videos are processed
offline, we would consider several different adjustments to
our algorithm. We would first consider player identification.
This would enable us to avoid measurements of the ball
within a certain proximity to the player. We would also
compute a second localization pass after the first. Since
the ball localization tracks closely but stray measurements
cause deviations, a second measurement and filtering pass
may smooth the trajectory. Instead of searching the whole
frame for ball candidates, on the second pass we would
instead search in a proximity of the estimated ball location
for that frame. This would hopefully give us much more
exact measurements for the true ball location at each frame
time from which we could compute a more exact ball state.

Additionally, frame synchronization was also a challenge.
For this project, we temporally synchronize the two videos
clips by hand using visual cues in the clips. While the clips
visually appear to be synchronized, automating this process
would remove the potential for human error.

C. Limited Data Capture

Finally, due to our limited access to the tennis stadium,
we were not able to capture stereo videos from additional
cameras angles besides the one shown in this paper. It would
be interesting to see how capturing videos from opposite ends



of the court or from the sides of the court would impact the
performance of our system. Capturing videos from additional
camera angles could minimize occlusions of the line and/or
tennis ball by the player, and perhaps would improve the
depth estimation accuracy in our system.

VI. CONCLUSION

The goal of this project was to apply image processing
techniques to stereo smartphone camera footage in order to
bring ball trajectory analysis one step closer to recreational
tennis audiences. Through the process described in this
paper, we successfully identified court location and ball
trajectories for stereo footage from our iPhone cameras. Al-
though our system must be run offline and returns trajectories
which are much less accurate than those of the Hawk-Eye
system, the success of this project proves that tennis ball
tracking is viable for the everyday tennis player.

APPENDIX

All team members were involved in all stages of the
project, but each team member took the lead on the following
tasks:

¢ Megan: Camera setup and calibration, video capture and
editing, tennis player for data collection, visualization

e Tori: Ball detection, Kalman Filter

e Kyle: Court detection, multiple-view geometry, accu-
racy tests

It is additionally worth noting that Megan is enrolled in EE
367 and EE 368 and combined the two projects.
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