

Learning to Detect Light Field Features Kelly Guan, Farah Memon, Lars Jebe Stanford University

Motivation

- Conventional keypoint extraction methods (e.g. SIFT) do not account for additional dimensions in light fields
- Extra information in 4D light fields can improve quality of detected keypoints
- A learning approach can significantly speed up detection, which is needed for real time applications

(u, v, s, t) # of Images Dataset Size

Proof of Concept: Light Field Information 14 - Average 2D CNN **Original Image** Noisy Image 3D CNN 57.1 % 25.4 % 35.1 % SSIM: 8.3 % 3D reconstruction is superior to 2D % \rightarrow Additional light field .⊆ $\frac{10^{1}}{10^{1}}$ dimension contains useful information Noisy Image ----- 14 - AVG \rightarrow Assumption: Useful 2D CNN for feature detection too --- 3D CNN 10^{-1} Noise standard deviation

Image sources: Stanford Light Field Archive and Donald Danserau

References

features (yellow)

David G. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". In: International Journal of Computer Vision 60.2 (2004), pp. 91–110.

Xufeng Han et al. "Matchnet: Unifying feature and metric learning for patch-based matching". In: Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE. 2015, pp. 3279-3286.

acy Accur

When training on 1 million patches, train and test accuracy converge to ~ 98.6 %

Model	Specifications	Train Ac
2D Classification	Hi-res rendered images	98.7 %
2D Classification LF	2D light field slices	96.0 %
3D Classification LF*	3D light field slices	95.8 %

* Trained on SIFT Features; light field advantage not yet reflected in training data

Detection Results

Model	Specifications	Recall*	Precision*
2D Detection	32 x 32 scale	15.8 %	27.6 %
2D Detection LF	16 x 16 scale	12.2 %	14.7 %

* Compared to SIFT Features of scale 2.67 +/- 1 for 32 x 32 patches and to SIFT features of scale 1.33 +/-1 for 16 x 16 patches

Hani Altwaijry et al. "Learning to Detect and Match Keypoints with Deep Architectures." In: BMVC. 2016.

EE 368 Winter 2018

- Classification of patches with CNN works reliably
- Features detection can be learned \rightarrow good first step
- Light field advantage can be leveraged only with more meaningful training samples

Future Work

- Train model on patches filtered by COLMAP
- Scale input images to detect features at different scales
- Reshape model with recursive layers to resemble scale space within model (Altwaijry et al., 2016)
- Build model that leverages all light field dimensions, e.g. on 3D volume (u,v,depth)

94.7 %

94.3 %

Johannes Lutz Sch"onberger et al. "Comparative Evaluation of Hand-Crafted and Learned Local Features". In: Conference on Computer Vision and Pattern Recognition (CVPR). 2017.