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Abstract—We present an image processing algorithm for the
automated identification of beer types using SIFT-based image
matching of bottle labels. With a database of 100 beer labels
from various breweries, our algorithm correctly matched 100%
of corresponding query photographs with an average search time
of 11 seconds. To test the sensitivity of our algorithm, we also
collected and tested a second database of 30 labels from the same
brewery. Remarkably, the algorithm still correctly classified 97 %
of labels. In addition to these results, we show that the SIFT-based
recognition system is highly robust against camera motion and
camera-to-bottle distance.

I. INTRODUCTION

The emergence and pervasiveness of smartphones over the
last decade has made it possible to search for and keep records
of various products and activities on-the-go. One such appli-
cation of smart-phones is to search for information regarding
consumer products and receive instant feedback regarding the
product. This process typically involves manually performing
an online text search, but this can become cumbersome over
time and lacks the “fun” factor of image-based searches. The
objective of this study was to evaluate the feasibility and
robustness of an automated image processing technique to
enable rapid image-based lookups of various beer labels. Such
an algorithm would use an input image of a beer bottle and
compare the label to a database of beer labels in order to
find a match. Indeed, one mobile application called NextGlass
already implements such an algorithm to provide beer reviews
and create a social network of beer consumption with friends.
Therefore, while the eventual goal of this technique would be
implementation on a smart-phone, the scope of this project
was to develop and characterize the algorithm on a computer
first.

II. DATABASE CREATION AND PRE-PROCESSING

To generate our initial database of beer labels, we collected
100 “clean” images (i.e. not photographs) of various beer
labels using Google Image search. The database included a
variety of breweries, with no more than 5 labels coming from
the same one. Next, for each database image, a corresponding
query (test) image of a beer bottle with that label was found.
These test images included photographs taken 6 to 12 inches
away from the bottle, so that the bottle took up at least a
third of the photo. To make these query images similar to
those that would be acquired with a camera phone, the image
was cropped to a 4:3 aspect ratio. Finally, for computational
efficiency, query and database images were downsampled to
a matrix size of 400x300 pixels.
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To test the sensitivity of our algorithm, we also collected a
separate database of 30 labels and 30 matching query images
from the same brewery (Samuel Adams). These labels were
purposefully chosen to be very similar to the human eye, to
allow us to evaluate how well the algorithm could classify
similar-looking query images.

To test how well the algorithm could classify test images
corrupted by camera motion, we simulated camera motion
for each of the 100 query photographs. Motion was simulated
using the fspecial command in Matlab ("motion’ filter) with
motion ranging from 2 to 20 pixels at angles of 0, 45, and 90
degrees.

Finally, we collected (in person) a database of query
images for 5 different beer labels, with photographs taken at
varying distances from the bottle (6 inches to 5 feet). Images
were captured using an iPhone 5 camera. Unlike the images
described above, these images were not downsampled for
analysis. Rather, we used the full resolution 2448x3264 pixel
photographs. This was performed to replicate the conditions
for the eventual mobile realization of this algorithm.
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Fig. 1. Image processing strategy for SIFT-based beer label classification.

III. LABEL MATCHING ALGORITHM

The general processing strategy of our SIFT-based
classification algorithm is provided in Fig. 1. We chose to
implement SIFT, first described by Lowe [1], due to its
rotational and scale invariance in image matching. At a high
level, our algorithm operates by finding the database image
that shares the highest number of post-RANSAC SIFT feature
matches with the query image. To accomplish this, SIFT
keypoints are first extracted from all the database images.
These are pre-computed and stored to save time. These SIFT
keypoints are computed by finding the scale-space extrema
between differences-of-Gaussians (DoG) pyramids. As first
described by Crowley and Stern [2], the DoG pyramids
are generated by convolving the image with variable scale
Gaussians.



Once SIFT keypoints are identified, a descriptor is computed
for each of them. To create a descriptor that is robust to
illumination changes and affine distortions, an 8-bin histogram
is created for a 4x4 space around the keypoint at its specific
scale. This descriptor has values created by calculating the
gradient magnitude and orientation around the keypoint, and
rotating it with respect to the most significant orientation
determined for that keypoint. All these values are used to
generate an orientation histogram of 8 bins, for each of the
16 sub-regions. This generates a descriptor vector of length
128. This vector is subsequently normalized, thresholded,
and normalized again in order to mitigate the impacts of
non-linear illumination changes.

This process of feature extraction is repeated for each
query image by finding its SIFT keypoints and extracting the
corresponding descriptor vectors. To identify the matching
database image, the SIFT features of the query image are
compared to those of each database image. A given pair of
SIFT descriptors D1 and D2 is considered to be a match only
if the Euclidean distance between them multiplied by some
threshold (in this case 1.5) is not greater than the distance
between D1 and all other descriptors. Once these potential
matches are identified, a homography model is generated
and outliers are excluded using RANSAC [3]. The database
image with the highest number of feature correspondences
post-RANSAC is considered to be the matching image.

In this project, the SIFT keypoints and features were
computed and matched using the vl_feat toolbox [4].

IV. RESULTS
A. Algorithm Performance and Sensitivity

Each query classification took around 11 seconds to eval-
vate. Overall, the algorithm performance was 100%, with the
algorithm correctly matching each of the 100 query camera
images to the correct label. To our surprise, the algorithm was
also robust against similar labels from the same brewery (in
this case, Samuel Adams). Out of 30 Samuel Adams labels, 29
of the corresponding query images were correctly classified.
All the Samuel Adams labels can be seen in Fig. 2. Four
representative examples of correctly classified query images
are provided in Fig. 3.

B. Effect of camera motion

Even after query images were filtered to have 16 pixels
of simulated camera motion, the label matching algorithm
performed with a success rate of at least 50% (Fig. 4). Note
that with 100 database labels, random chance is a 1% success
rate. The success rate was almost perfect for around 6 pixels of
simulated camera motion, but beyond that, it dropped linearly
at a rate proportional to the number of pixels of motion. There
did not appear to be a strong dependence on the motion angle
on the overall success rate as all three angles (0°,45°, and
90°) exhibited similar success rates.

One example of a query image subjected to motion is
shown in Fig. 5. While the number of RANSAC matches
decreased from 168 to 13 because of the 20 pixel motion,
a correct classification was still made by the algorithm.
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Fig. 2. 30 labels from the Samuel Adams brewery were used to generate a
sensitivity metric due to their visual similarity.

Fig. 3.
identified with our algorithm) show that the algorithm is robust against label
from the same brewery. Post-RANSAC correspondences are shown for only
one of the label pairs for visual clarity.

Four representative query images and corresponding labels (as
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Fig. 4. Classification success rate as a function of simulated motion.
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Fig. 5. (Top) Original image pair of RANSAC matches between an
Anchor Steam query and label image shows 168 RANSAC matches. (Bottom)
Correctly classified query image with 20 pixels of 45 degree motion shows
13 RANSAC matches.
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Fig. 6. Classification success rate and the number of RANSAC matches as
a function of the distance between the query image bottle and the camera.

C. Dependence on camera-to-bottle distance

As can be seen in Fig. 6, there is no dependence on the
distances to bottle and the overall success rate, as long as the
bottle is within 4 feet of the camera (n = 5 labels). At distances
less than 4 feet, the success rate remains at 100%, while
beyond 4 feet, the success rate drops to 80% (i.e. 1 of 5 labels
incorrectly classified). The number of RANSAC matches reach
a maximum at 18 inches. Fig. 7 provides a representative
query image that was correctly matched to its database label
at distance of 36 inches, showing that our algorithm is robust
to camera-to-bottle distance (as long as the resolution is high
enough to discern different keypoints).
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Fig. 7. The query image on the left was correctly matched to its database
label (shown on right) even when the bottle was 36 inches away from the
camera. This is representative of the algorithm’s general robustness against
camera-to-bottle distance.

V. DISCUSSION

The perfect success rate of the algorithm is a testament to
the robustness of the SIFT keypoint detector and description
technique. This is especially true considering that 29 out of 30
Samuel Adams labels which were very similar in appearance
could be correctly classified, with the SIFT algorithm teasing
out minor differences. It is interesting to note that in this
sensitivity analysis, the correct classification was made pos-
sible by the additional correspondences detected in the subtle
background behind the Samuel Adams text. In addition, several
matches were also made in the actual text of the name of the
beer. Thus, despite a very similar macroscopic appearance,
the subtle background and the name of the beer were used
to perform accurate classifications.

The robustness of the algorithm to motion was not entirely
unexpected either. Since the SIFT keypoint detector relies on
blurring with Gaussians of variable scales, the net effect is
similar to that of a motion blur. With the robustness of SIFT,
even though the number of RANSAC matches decreased with
motion, accurate matches were still possible. Based on the
severely degraded image quality of the motion image in Fig. 5
(which still produced an accurate classification), it might be
safe to claim that this algorithm is immune to typical blurs
seen in pictures created with mobile phones. Furthermore, the
lack of sensitivity to the specific angle of motion may be due
to beer labels generally not having a predominant angle in their
gradients.

The effect of distance between the camera and the beer bot-
tle was shown to be relatively mild since perfect classifications
could still be performed when beer bottles were 4 feet away
from the camera. Fig. 6 seems to suggest that it might be best
to have the bottle 18 inches away in order to maximize the
number of RANSAC matches. When the bottle was 6 inches
and 12 inches away from the camera, it was challenging to get
the entire label in the picture which results in lost information
that could have been used for keypoint matching. However, the
interesting aspect to note from Fig. 6 is that while the number
of RANSAC matches kept decreasing with the distance, the
classification success rate stayed relatively constant. This may
suggest that the absolute quantity of matches may not be
as important as the uniqueness of the detected keypoint. It
is also worth reiterating that the camera images were not



downsampled for the distance experiment. If the images were
to be downsampled, there would be very little fine detail
available in images that are far away from the camera. This
would suggest that there is a need to evaluate a dynamic depth-
based downsampling algorithm.

Each query classification took around 10 seconds to eval-
vate on 8 parallel processors in MATLAB. Implementing
a parallel algorithm for mobile phones is quite reasonable
since most new smart-phones are indeed octa-core proces-
sors. The SIFT keypoints and descriptors for the labels were
precomputed and cached in order to increase computational
efficiency. While 10 seconds is reasonably efficient, a faster
algorithm that could perform the detection in 1-2 seconds
would certainly be preferable. This would especially be true if
the database of labels would be more than the 100 labels used
in this study. Implementing this algorithm in C or Java could
lead to increased efficiency. Thresholding the SIFT keypoint
detection (which was not done in these experiments) would
also dramatically reduce the computation overhead. Together,
these points suggest that the algorithm developed here could
be readily deployed on a mobile-based platform.

VI. CONCLUSIONS

In the project, we developed and characterized a digital
image processing algorithm for the automated detection of
beer labels from photographs of 100 different beer bottles. The
algorithm achieved a high (100%) success rate, was sensitive
to subtle differences between distinct labels, and displayed
robust classification against simulated camera motion and large
camera-to-bottle distances. This tool would be appropriate for
various mobile phone applications, including resources for
consumer product information and even social networks.
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