
Digitizing sheet music
!

Tal Stramer
Department of Computer Science

Stanford University
Email: tstramer@stanford.edu

!!!!!!!!
Abstract—Sheet music is used by millions of people to play

music every day. While it is a great tool for learning how to play
an instrument and/or song, it lacks many of the benefits of a
digital format. Being able to organize, share, and edit a piece of
music are powerful tools that a digitized format introduces. A
digitized format also introduces the possibility of providing a
cheaper, and in some cases better, alternative for students to
learn an instrument or song through an automated teacher. The
reality is, however, that sheet music will be around for a long
time to come, so I built a system capable of digitizing an image of
a piece of sheet music, which in turn can be used as the basic
building block for a better experience for musicians and aspiring
musicians to learn, play, organize, and enjoy music.

Keywords—music; piano; optical music recognition; sheet
music;

I. INTRODUCTION
My system takes an image of a piece of sheet music and

converts it into a custom digital format. This format can be
passed to a separate system I built capable of playing the song
through a computer speaker. The system breaks down into 3
parts: 1) low-level image processing, 2) symbol classification,
and 3) semantic understanding. Each part builds on the
previous one, and allows for a clean separation of concerns.
The first stage breaks the image into individual symbols, which
include things like note heads, beam lines, breaks, dot sets,
accidentals, staff lines, clef, and many more. The second stage
takes the symbols detected in the first stage and classifies them
using a supervised machine learning algorithm. The third stage
takes the symbols, classifications, and spatial relationships
between symbols and creates the final digitized format, which
can be used in many different applications, including one that I
built for the project that can play the song through the
computer speaker.

II. LOW-LEVEL IMAGE PROCESSING

 The goal of low-level image processing is to convert the
raw image of the piece of sheet music into its constituent
symbols. This problem breaks down into several sub-parts.

A. Image binarization
The first step is to convert the image into a binary form. To

do this, we use a simple approach of using a the mean of the
image as a global threshold for determining whether a pixel is
1 or 0. This works in a contained setting. In a more real-word
setting where there are different lighting conditions and noise
in the image, locally adaptive thresholding would be preferred.

Below is an example section from a piece of sheet music after
being converted to binary. 

Fig. 1: Binarized sheet music

B. Image orientation detection
The second step is to detect the orientation of the image in

order to be able to rotate the image so that it is up-right. This
becomes key for later phases of the algorithm, for example
detecting staff lines. In order to detect the orientation of the
image, we use the hough algorithm to identify the orientation
of the dominant lines in the image (in this case the staff lines).  
The hough algorithm works by converting each active point (x,
y) in the image to Hesse normal form, which is a form
following the equation:

r = x cos(Θ) + y sin(Θ)

The angle Θ corresponds to the orientation of the line and r
corresponds to the distance from the origin. Using these values,
the hough algorithm finds the pair (r, Θ) that occurs in the most
curves defined by the set of input pixels (x, y) in the image.
Figure 2 below shows a histogram of orientations and their
peaks for a sample input image. 

Fig. 2. Hough orientation histogram and peaks

Identify applicable sponsor/s here. If no sponsors, delete this text box (sponsors).

Because the staff lines are horizontal in an up-right image,
we can then use the angle detected by the hough algorithm to
rotate the image so that it is up-right.

C. Staff-line detection + removal

 The next step is to detect staff lines in the image. To do
this, we start by performing a morphological close operation
using a 2x2 structuring element in order to fill in any holes in
the staff lines. After that, we perform erosion on the staff lines
using a 1x49 structuring element. Once the staff lines are
detected, we detect the distance between staff lines, which is
used in later stages of the image processing algorithm. We
then remove the staff lines from the original image. After
removing the staff lines, we are left with holes in symbols
from the original image that the staff lines intersected with. In
order to fill these, we perform a morphological close operation
using a structuring element of the form [1; 0; 1]. This detects
holes in the image in which the pixels above and below are
filled, which are likely to be places where the staff line was.

D. Symbol detection

 The final step in the low-level image processing stage is
symbol detection. In this stage we detect all the basic symbols
in the staff-line removed image. In order to achieve this, we
first split the image up into connected components. All non-
note connected components then become base symbols. Figure
3 shows a color-coded and numbered representation of the
connected components for a sample section from a sheet of
music.  

Fig. 3: Connected components of sheet music sample

  
 Connected components are further processed in order to
detect connected notes, which are then split up into more basic
components, like note heads and beams. To do this, we
attempt to detect stem lines in each connected component,
which is achieved by performing erosion using a vertical
structuring element half the size of a group of staff lines (e.g. a
row of the sheet of music). This threshold allows us to detect
note stems while avoiding false positives from other symbols
containing vertical lines, like a sharp. For each connected
group of notes found, we further split the component up into
sub-components by splitting along each stem line. Then, for
each of these sub-components we split the sub-component
vertically into smaller sub-components, which isolates stem
lines from the note head, and accidentals from beam lines.
Figure 4 illustrates this segmentation process: !!!

Figure 4: Horizontal segmentation (left) and vertical
segmentation (right) !
III. SYMBOL CLASSIFICATION

The goal of symbol classification is to take the symbols
generated in phase 1 and label them with their symbol type. To
do this, we use supervised machine learning to build a n-class
SVM classifier. Specifically, we start with a training set [4] of
around 5-50 examples per symbol. Figure 5 shows some
example symbols from this training set.

 
Figure 5: Example training set symbols !

For each example, we first resize the image so that it is
20x20. Then, we project the resized image into a lower-
dimensional feature space consisting of a histogram of
orientation gradients (HoG), which detects gradient
orientations in the image. HoG features are extracted from each
4x4 window. We chose 4x4 because it provided a good trade-
off between finding granular features in the image and not
making the feature space too large. Figure 6 below depicts
HoG features for a sample image: 

Figure 6: HoG features for a sample image !
After we have converted each example symbol into a

feature vector, we train a n-class SVM classifier using these
feature vectors. This classifier is then used to label the symbols
extracted from phase 1. !

 !!

IV. SEMANTIC UNDERSTANDING
The last phase of the image processing algorithm, semantic

understanding, combines the symbols, classifications, and
spatial relationships between symbols into the final digitized
format. This stage breaks down into several smaller parts.

A. Section segmentation
Section segmentation splits the piece of sheet music into

distinct sections, which consist of a row of the song containing
a key signature and clef. In order to split the song up into
sections, we match each symbol to its closest staff line. Then
for each group of 5 staff lines, we consider all symbols closest
to it part of the same section. After grouping symbols by
section, we sort all the symbol in a section by x coordinate
which is necessary for later stages of semantic understanding.

B. Clef detection
Clef detection is concerned with detecting the clef, either

base or trebel, of a section. Clef detection is achieved for each
section by looking for a symbol classified in stage 2 as a treble
or base clef.

C. Key signature detection
Key signature detection is achieved for each section by

counting the number of sharps and flats to the left of the notes
section. This is done based on the symbol classifications in
stage 2.

D. Note position + length detection
Using the size of the gap between staff lines and the

position of the note head, we can determine the note value. For
length detection, we use a combination of symbol
classifications and information about connected components
extracted from 1. Specifically, if a note is connected to a stem
that is classified as an 8th note stem, we classify it as an 8th
note. If a note is connected to other notes by an 8th note beam,
we classify it as a 8th note. Similarly, if a note is connected to
other notes by a 16th note beam, we classify it as a 16th note.
To distinguish between quarter notes and half notes, we use a

hit-miss filter to detect whether the note head as a hole in it. To
detect a dot set, which extends the length of the note by 3/2, we
look at the surrounding context of the note and try to find a dot
on the same level and to the right of the note.

E. Note + accidental grouping
In order to detect sharps, flats, and naturals, we look at the

surrounding context of each note for symbols labeled with
these classifications. In addition, we require that the symbol be
on the same level and to the left of the note.

F. Break detection

 Break detection works by going through the symbols in a
section and finding symbols classified in section 2 as a break,
which can be either an 8th note break or quarter note break. !
V. EXPERIMENT RESULTS

Using 5 songs as a test set [5], we found that 95% of notes
were classified correctly, 92% of note lengths were classified
correctly, 100% of clefs and key signatures were classified
correctly, and 95% of breaks were classified correctly.

REFERENCES
1. Bellini, Pierfrancesco, Ivan Bruno, and Paolo Nesi. "An OffLine Optical

Music Sheet. Recognition.” Visual Perception of Music Notation: On-
Line and OffLine Recognition. Hershey, Pennsylvania: Idea Group
(2004): 4077.

2. Bellini, Pierfrancesco, Ivan Bruno, and Paolo Nesi. "Assessing optical
music recognition. Computer Music Journal 31.1 (2007): 6893.

3. Bainbridge, David, and Tim Bell. "The challenge of optical music
recognition."Computers and Computers and the Humanities 35.2
(2001): 95121.

4. Retrieved from https://github.com/acieroid/overscore/tree/master/
training-set

5. Retrieved from http://scores.ccarh.org/bach/chorale/chorales.pdf !!

https://github.com/acieroid/overscore/tree/master/training-set
http://scores.ccarh.org/bach/chorale/chorales.pdf

