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Abstract—Sheet music is used by millions of people to play 

music every day. While it is a great tool for learning how to play 
an instrument and/or song, it lacks many of the benefits of a 
digital format. Being able to organize, share, and edit a piece of 
music are powerful tools that a digitized format introduces. A 
digitized format also introduces the possibility of providing a 
cheaper, and in some cases better, alternative for students to 
learn an instrument or song through an automated teacher. The 
reality is, however, that sheet music will be around for a long 
time to come, so I built a system capable of digitizing an image of 
a piece of sheet music, which in turn can be used as the basic 
building block for a better experience for musicians and aspiring 
musicians to learn, play, organize, and enjoy music. 
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I. INTRODUCTION 
My system takes an image of a piece of sheet music and 

converts it into a custom digital format. This format can be 
passed to a separate system I built capable of playing the song 
through a computer speaker. The system breaks down into 3 
parts: 1) low-level image processing, 2) symbol classification, 
and 3) semantic understanding. Each part builds on the 
previous one, and allows for a clean separation of concerns. 
The first stage breaks the image into individual symbols, which 
include things like note heads, beam lines, breaks, dot sets, 
accidentals, staff lines, clef, and many more. The second stage 
takes the symbols detected in the first stage and classifies them 
using a supervised machine learning algorithm. The third stage 
takes the symbols, classifications, and spatial relationships 
between symbols and creates the final digitized format, which 
can be used in many different applications, including one that I 
built for the project that can play the song through the 
computer speaker. 

II. LOW-LEVEL IMAGE PROCESSING 

 The goal of low-level image processing is to convert the 
raw image of the piece of sheet music into its constituent 
symbols. This problem breaks down into several sub-parts. 

A. Image binarization 
The first step is to convert the image into a binary form. To 

do this, we use a simple approach of using a the mean of the 
image as a global threshold for determining whether a pixel is 
1 or 0. This works in a contained setting. In a more real-word 
setting where there are different lighting conditions and noise 
in the image, locally adaptive thresholding would be preferred. 

Below is an example section from a piece of sheet music after 
being converted to binary. 

Fig. 1: Binarized sheet music 

B. Image orientation detection 
The second step is to detect the orientation of the image in 

order to be able to rotate the image so that it is up-right. This 
becomes key for later phases of the algorithm, for example 
detecting staff lines. In order to detect the orientation of the 
image, we use the hough algorithm to identify the orientation 
of the dominant lines in the image (in this case the staff lines).   
The hough algorithm works by converting each active point (x, 
y) in the image to Hesse normal form, which is a form 
following the equation: 

r = x cos(Θ) + y sin(Θ) 

The angle Θ corresponds to the orientation of the line and r 
corresponds to the distance from the origin. Using these values, 
the hough algorithm finds the pair (r, Θ) that occurs in the most 
curves defined by the set of input pixels (x, y) in the image. 
Figure 2 below shows a histogram of orientations and their 
peaks for a sample input image. 

Fig. 2. Hough orientation histogram and peaks 
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Because the staff lines are horizontal in an up-right image, 
we can then use the angle detected by the hough algorithm to 
rotate the image so that it is up-right. 

C. Staff-line detection + removal 

 The  next step is to detect staff lines in the image. To do 
this, we start by performing a morphological close operation  
using a 2x2 structuring element in order to fill in any holes in 
the staff lines. After that, we perform erosion on the staff lines 
using a 1x49 structuring element. Once the staff lines are 
detected, we detect the distance between staff lines, which is 
used in later stages of the image processing algorithm. We 
then remove the staff lines from the original image. After 
removing the staff lines, we are left with holes in symbols 
from the original image that the staff lines intersected with. In 
order to fill these, we perform a morphological close operation 
using a structuring element of the form [1; 0; 1]. This detects 
holes in the image in which the pixels above and below are 
filled, which are likely to be places where the staff line was. 

D. Symbol detection 

 The final step in the low-level image processing stage is 
symbol detection. In this stage we detect all the basic symbols 
in the staff-line removed image. In order to achieve this, we 
first split the image up into connected components. All non-
note connected components then become base symbols. Figure 
3 shows a color-coded and numbered representation of the 
connected components for a sample section from a sheet of 
music.  

Fig. 3: Connected components of sheet music sample 

  
 Connected components are further processed in order to 
detect connected notes, which are then split up into more basic 
components, like note heads and beams. To do this, we 
attempt to detect stem lines in each connected component, 
which is achieved by performing erosion using a vertical 
structuring element half the size of a group of staff lines (e.g. a 
row of the sheet of music). This threshold allows us to detect 
note stems while avoiding false positives from other symbols 
containing vertical lines, like a sharp. For each connected 
group of notes found, we further split the component up into 
sub-components by splitting along each stem line. Then, for 
each of these sub-components we split the sub-component 
vertically into smaller sub-components, which isolates stem 
lines from the note head, and accidentals from beam lines. 
Figure 4 illustrates this segmentation process: !!!

Figure 4: Horizontal segmentation (left) and vertical 
segmentation (right) !
III. SYMBOL CLASSIFICATION  

The goal of symbol classification is to take the symbols 
generated in phase 1 and label them with their symbol type. To 
do this, we use supervised machine learning to build a n-class 
SVM classifier. Specifically, we start with a training set [4] of 
around 5-50 examples per symbol. Figure 5 shows some 
example symbols from this training set. 

 
Figure 5: Example training set symbols !

For each example, we first resize the image so that it is 
20x20. Then, we project the resized image into a lower-
dimensional feature space consisting of a histogram of 
orientation gradients (HoG), which detects gradient 
orientations in the image. HoG features are extracted from each 
4x4 window. We chose 4x4 because it provided a good trade-
off between finding granular features in the image and not 
making the feature space too large. Figure 6 below depicts 
HoG features for a sample image: 

Figure 6: HoG features for a sample image !
After we have converted each example symbol into a 

feature vector, we train a n-class SVM classifier using these 
feature vectors. This classifier is then used to label the symbols 
extracted from phase 1. !

 !!



IV. SEMANTIC UNDERSTANDING 
The last phase of the image processing algorithm, semantic 

understanding, combines the symbols, classifications, and 
spatial relationships between symbols into the final digitized 
format. This stage breaks down into several smaller parts. 

A. Section segmentation 
Section segmentation splits the piece of sheet music into 

distinct sections, which consist of a row of the song containing 
a key signature and clef. In order to split the song up into 
sections, we match each symbol to its closest staff line. Then 
for each group of 5 staff lines, we consider all symbols closest 
to it part of the same section. After grouping symbols by 
section, we sort all the symbol in a section by x coordinate 
which is necessary for later stages of semantic understanding. 

B. Clef detection 
Clef detection is concerned with detecting the clef, either 

base or trebel, of a section. Clef detection is achieved for each 
section by looking for a symbol classified in stage 2 as a treble 
or base clef.  

C. Key signature detection 
Key signature detection is achieved for each section by 

counting the number of sharps and flats to the left of the notes 
section. This is done based on the symbol classifications in 
stage 2. 

D. Note position + length detection 
Using the size of the gap between staff lines and the 

position of the note head, we can determine the note value. For 
length detection, we use a combination of symbol 
classifications and information about connected components 
extracted from 1. Specifically, if a note is connected to a stem 
that is classified as an 8th note stem, we classify it as an 8th 
note. If a note is connected to other notes by an 8th note beam, 
we classify it as a 8th note. Similarly, if a note is connected to 
other notes by a 16th note beam, we classify it as a 16th note. 
To distinguish between quarter notes and half notes, we use a 

hit-miss filter to detect whether the note head as a hole in it. To 
detect a dot set, which extends the length of the note by 3/2, we 
look at the surrounding context of the note and try to find a dot 
on the same level and to the right of the note. 

E. Note + accidental grouping 
In order to detect sharps, flats, and naturals, we look at the 

surrounding context of each note for symbols labeled with 
these classifications. In addition, we require that the symbol be 
on the same level and to the left of the note. 

F. Break detection  

 Break detection works by going through the symbols in a 
section and finding symbols classified in section 2 as a break, 
which can be either an 8th note break or quarter note break.  !
V. EXPERIMENT RESULTS 

Using 5 songs as a test set [5], we found that 95% of notes 
were classified correctly, 92% of note lengths were classified 
correctly, 100% of clefs and key signatures were classified 
correctly, and 95% of breaks were classified correctly. 
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