EE 368: DIGITAL IMAGE PROCESSING

Virtual Musical Instruments

Abhinav Rastogi, Ameya Joshi

Abstract—The virtual musical instrument is an interface that
allows users to simulate a musical instrument by printing a
template on a sheet of paper, placing it in view of the webcam
of their laptop, and running the console application. The user
then ’plays’ the virtual instrument as if it were a real one, and
appropriate music is generated. This is achieved by calibration of
the template, detecting the marker position, identifying the hit
position and playing notes corresponding to that position. We
demonstrate this process for three different *virtual instruments’
and also report the accuracy of estimating the hit position.

Index Terms—Object detection, calibration, homography, hu-
man computer interaction, tangible interaction

I. INTRODUCTION

Omputers have become pervasive today. However, even

now, we interact with them using traditional input meth-
ods like mouse, keyboard and more recently the touch screen.
The digital image processing class introduced us to techniques
that could be used to quantify human gestures and movements.
We realized that using these techniques, we could build an
intuitive, low-cost and tangible interface.
Everybody likes to play music, if not, to at least listen to
music. One of the barriers to playing music for recreation
is the high cost of musical instruments. Many people want
to play a piano once in a while, but are not always ready to
spend more than a hundred dollars for that sake. Also, musical
instruments require space and regular maintenance. You may
feel like trying a different musical instrument after playing
the old one for a long while. In order to do that, you’ll have
to buy a new one. These plausible situations motivated us to
apply the image processing skills we learned in class to the
problems mentioned above. We came up with a virtual musical
instrument, which is nothing but a template printed on a piece
of paper. Our set up also doesn’t require you to buy fancy
hardware. All you need is a laptop that has a web camera.
The application is run on the laptop and the user plays the
virtual instrument as if it were a real one. Consider the
example of drums, where the user is hitting the paper template
with a ’stick’ (a marker). The camera captures the movement
of the stick, the application then estimates the hit position
and time, and the sound corresponding to that hit position in
the real-world musical instrument is then played through the
speakers.

II. RELATED WORK

There have been numerous projects that have explored
the use of augmented reality, three-dimensional interfaces,
physical and tangible interaction for generating music. One
such project is the *Augmented Groove’ [[1]. In the augmented
groove, users can play music together, with or without tradi-
tional musical instruments, simply by picking and manipu-
lating physical cards on the table. The physical motions of

the cards are mapped to changes in musical elements such
as timbre,pitch, rhythm, reverb and others. At the same time,
users wearing a lightweight head-mounted display (HMD) can
see 3D Virtual instruments attached to the cards whose shapes,
color and dynamics reflect aspects of the music controlled by
the visitors. The music in a sense becomes a physical and
tangible object, something we can touch and see as part of
our physical environment.

The reacTable [2] is a multi-user electro-acoustic musical
instrument with a table-top tangible user interface. It is
hence very similar to our setup, which also uses a table
placed in view of the laptop webcam. In the reacTable,
several simultaneous performers share complete control over
the instrument by moving physical artefacts on the table
surface while constructing different audio topologies in a kind
of tangible modular synthesizer or graspable flow-controlled
programming language. The instrument hardware is based on
a translucent round table. A video camera situated beneath,
continuously analyses the table surface, tracking the nature,
position and orientation of the objects that are distributed on
its surface. The tangible objects, which are physical represen-
tations of the components of a classic modular synthesizer,
are passive, without any sensors or actuators; users interact by
moving them, changing their position, their orientation or their
faces. These actions directly control the topological structure
and parameters of the sound synthesizer. A projector, also
from underneath the table, draws dynamic animations on its
surface, providing a visual feedback of the state, the activity
and the main characteristics of the sounds produced by the
audio synthesizer. Our design does not currently use any active
illumination or projector that augments the template.

III. VIRTUAL MUSIC PLAYER

A. Process flow

~

Flow diagram

|

|meannnmgs
| calibration " mnm o moEoEoE
(Homography)
|
Detect Estimate Frequency
arker Position Sound template Play music
(HSV threshold) in template -

LR

Fig. 1: Flow diagram of virtual music player

The application first calibrates the position of the markers.
Each template has a set of dots located on the bordering grids,
which are used for calibration. The process of calibration es-
sentially involves calculating the homography from the image

EE 368: DIGITAL IMAGE PROCESSING

observed from the camera to the template image stored on the
system. Once calibration is over, the application detects the
marker in each input frame. This results in a time series of
marker positions, with a few possible gaps due to limitation of
the camera. This time series is used to obtain the instants when
the marker hits the paper template. The homography calculated
during calibration is then used to estimate the location of the
marker in the grid by making use of the marker coordinates
in the input image at these instants. The music corresponding
to the detected position is then played on the speaker.

B. Calibration

We use morphological image processing for locating the
black dots present on the border. We do binary thresholding
of the input image using Otsu’s method. The result for this
operation can be seen in Fig 2(b). Since the page occupies
the largest area in the input image, the largest connected
component is expected to belong to the the page. The detected
region is then eroded with a 5 X 5 mask to remove spurious
detections. Then we look for connected components located
inside the detected region corresponding to the page. The
different connected components have been shown in Fig. 2(c),
where black color denotes the largest connected component
and the remaining ones are shown in white.

Amongst the detected components, we do size based filter-
ing to detect the ones corresponding to the marker. The size
thresholds used are normalized with respect to the frame size
of the input image so that the detection is independent of the
camera used. Next we associate the detected key-points with
the corresponding points in the template image saved in the
system.

.:j .) . 'y‘. T\V:-j\;\‘-

AN EmEmEmNE msmEmuuw

AN EEEEN HEEEEuw

(a) Input image (b) Approx. Page detection

S8 FHEERTERR)

oOOoooooo oooouaa

(c) Connected components after
erosion

(d) Detected points

Fig. 2: Detection of template key-points during calibration

For this we take advantage of the fact that all templates
have the same border. We sort the detected points based on
the y-coordinate in the input image in ascending order. The
points are then clustered based on their y-coordinate. Then
points within each cluster are sorted according to x-coordinate
to get the appropriate correspondences. Due to structure of

the template, the clustering operation is quite trivial since we
know that there will be 4 clusters having 8, 2, 2 and 14 points
respectively.

We tried to do SIFT based matching of the two frames
and were able to get it working on MATLAB using VLFeat
package but we were not successful in observing the same
performance on our OpenCV based C++ implementation. Our
detection fails when there are fewer or more than 16 detections
in the image. To mitigate this, we loop through the initial
images till we obtain the desired number of key-points at
appropriate locations. During numerous tests conducted in var-
ious lighting conditions (yellow light, day light, indoor light)
we observed that our calibration process works flawlessly if
the background doesn’t contain black dots.

C. Marker detection, localization and tracking

(a) Input image (b) BGR to HSV

-4

FEEEEEN -EEEERR

(c) Threshold in HSV space (d) Detected marker

Fig. 3: Detection of marker from a frame in webcam feed

We use a standard pen with a green colored cap on its end
as a marker. We observed that detection is easier in HSV space
and hence we first convert the BGR space image to HSV space.
Then we set a threshold in the HSV space corresponding to the
following values LowHue = 39, HighHue = 80, LowSaturation
= 57, HighSaturation = 157, LowValue = 0, HighValue = 255.
These thresholds were calculated after tests under different
conditions. This threshold allows us to selectively pick only
the green parts of the webcam feed. However there is some
background noise that lies within the same limits. To remove
it, we find the connected components of the output and retain
only the largest connected component that has a size of 150
pixels.

Once we detect the marker, we need to find the position of
the tip. This is done by taking the mean along the x-axis of the
image (x), of the pixels that constitute the largest connected
component and by finding the maximum of the y-values of the
pixels that make up the largest connected component (y,,,). We
say that (xg, y,,) is the position of the tip of the marker.

On testing, we found that change in orientation and lighting
conditions, sometimes leads to no connected component of

EE 368: DIGITAL IMAGE PROCESSING

size 150 (normalized by image frame size). Also, if we
decrease the size from 150, we may pick up noise instead of
the marker. Due to the above reasons, there are certain frames
in the feed, in which no marker is detected. This creates a
necessity to predict or estimate the marker position when a
detection is not available. Hence to get an estimate of the
marker in every frame, we linearly interpolate the last two
marker positions to arrive at the current one, in case we fail to
detect the marker in the current frame. Using more detections
from the past for linear interpolation might increase our
chances of missing a maxima. Other interpolation techniques,
perhaps based on past observations of user behavior are a good
direction for future work.

D. Hit detection

Detecting hits

350

y-coordinate of marker in input image

50 100 150 200
frame number.

Fig. 4: Plot of y,, versus frame number. The local maxima
correspond to hits

Since the sound should be produced only when the marker
tip hits the paper template, we should be able to locate
the hit-moment. In our simplified approach, we associate the
maxima in the observed y-coordinates of the marker as hit
instants. Since detection of maxima requires knowledge of
future samples, we introduce a delay of 2 frames.

We perform maxima detection using a sliding-window
which has been implemented using a queue of size 5. As soon
as the current marker tip position is received, we insert the
y-coordinate of the marker tip y_current,, at the end of the
queue and pop out the oldest element from the queue. We keep
a history of 2 y,, values which are ahead of the current value
in the queue. When the center element of the queue is strictly
greater than all elements to its left and is greater or equal
to all elements to its right, a maxima is detected. The strict
inequality is needed to prevent ‘ringing’ artifacts (repetition
of the same sound) which happens when successive marker
positions have the same value.

E. Sound playing

Once we detect the hit position in the camera coordinates,
we use the homography to find the corresponding location
in the printed template. The sound template consists of two
layers. One layer gives the frequency for every pixel in the
instrument template and the second layer gives the intensity
for every pixel in the instrument template. We can code the
sound template in a way that resembles the spatial, frequency
and intensity variation of a traditional instrument like drums.
Hence once we get the hit-location, the frequency and intensity

of a traditional musical instrument corresponding to that
location can be played. The tones are stored as audio files
and are played in a separate process by creating a pipe so that
the detection program doesn’t halt.

- m om o m omom
- i X
-

(a) Input image (b) BGR to HSV

Fig. 5: Detection of marker from a frame in webcam feed.
The difference between the pen position and detected position
is a result of frame lag introduced by maxima detection

E Results

We tested our implementation on 3 vidoes made for 3
different instrument templates. Further to test the limits or
our application, we checked its performance when the speed
of hitting is increased. Our results are tabulated below. It
can be seen that at normal hit speeds, we detect all the hits
within a distance of one grid. As the speed is increased, the
performance deteriorates. The application is also fairly robust
in terms of the quality of light available but not the inten-
sity. Our test videos were made in indoor light whereas we
demonstrated our system in outdoor light. Good performance
was observed in both these cases.

3,?320 ;&g/rghfiiames Total hits Correct D=1 D >1 Accuracy
1 11.67 36 31 5 0 86.1%
2 11.67 18 9 9 0 50 %

3 11.67 18 13 5 0 72.2 %
4 10 36 29 7 0 80.56 %
5 11.67 18 16 2 0 88.89 %
6 11.67 18 17 1 0 94.44 %
7 10 33 28 5 0 84.85 %
8 9.13 22 14 8 0 63.63 %
9 8.57 22 20 2 0 90.91 %
10 6.67 36 18 12 6 50 %

11 3.5 24 12 2 10 50 %
12 5 24 7 3 14 29.17 %

G. Future work

Calibration can be made more robust against lighting and
background changes. We can use SIFT feature matching
followed by RANSAC to get the homography. This can also be
used for automatic detection of templates from a fixed template
database.

The latency of the entire process can be reduced. One way
to do this can be storing larger number of historical values
of the marker position and using them to predict in real-time
(without looking at any of the future values) that the user is
going to hit the paper.

Another improvement can be made in terms of the accuracy
of the localization and timing of the hit. This can be achieved

EE 368: DIGITAL IMAGE PROCESSING

by detecting the shadow of the marker on the template and
estimating the position and hit moment by determining when
the marker and its shadow overlap or come close.

IV. CONCLUSION

We have designed, implemented and tested a virtual musical
instrument system. Our system is low-cost and the user needs
to print just one sheet of paper for every instrument he/she
wishes to play. The latency of the process is small, and the
sound output is near real-time, though there is still room for
improvement. Our accuracy for the hit localization is 80% for
typical user behavior. We also successfully demonstrated our
system at the poster session.

APPENDIX A
CONTRIBUTIONS
o Abhinav - API design, Calibration, Hit detection, Audio
playing
« Ameya - Proposal, Object detection and tracking, Testing
and Results
« Joint Efforts - Poster, Report, Template Design

ACKNOWLEDGMENTS

We would like to thank Dr. Haricharan Lakshman for his
valuable suggestions which guided the design and implemen-
tation of this project. We would also like to thank Prof. Bernd
Girod, Prof. Gordon Wetzstein and the TAs for their guidance
and support.

SOURCE CODE
https://github.com/abhirast/Music Vision

REFERENCES

[1] Poupyrev, 1., Berry, R., Kurumisawa, J., Nakao, K., Billinghurst, M.,
Airola, C., & Baldwin, L(2000). Augmented groove: Collaborative
jamming in augmented reality. In ACM SIGGRAPH 2000 Conference
Abstracts and Applications (p. 77)

[2] Kaltenbranner, M., et al. "The reactable*: A collaborative musical in-
strument.” Enabling Technologies: Infrastructure for Collaborative Enter-
prises, 2006. WETICE’06. 15th IEEE International Workshops on. IEEE,
2006.

https://github.com/abhirast/MusicVision

	Introduction
	Related Work
	Virtual Music Player
	Process flow
	Calibration
	Marker detection, localization and tracking
	Hit detection
	Sound playing
	Results
	Future work

	Conclusion
	Appendix A: Contributions
	References

