
Tracking of Small Unmanned Aerial Vehicles

Steven Krukowski
Aeronautics and Astronautics

Stanford University
Stanford, CA 94305

Email: spk170@stanford.edu

Adrien Perkins
Aeronautics and Astronautics

Stanford University
Stanford, CA 94305

Email: adrienp@stanford.edu

Abstract—Visual tracking of small unmanned aerial vehicles
(UAVs) on a smart phone can be quite a daunting task. In this
paper an image processing algorithm is outlined in order to be
able to assist a user in visually tracking small UAVs. Due to the
small nature of the target, simple template matching or optical
flow provided to be too process intensive and unreliable for real
time tracking. To improve accuracy and speed, a motion model
is used to limit the search area used, resulting in performance
levels required for real time processing.

I. INTRODUCTION

A. Motivation

As the use of small unmanned aerial vehicles (UAVs)
increase today, so does the desire to use them as a platform
for photography and filming. One area of interest is the ability
to use these vehicles as a platform for filming other UAVs
that are in flight. Unfortunately one of the most challenging
parts of this process is the task of visually tracking a target in
the live stream from one of these cameras. Many commercial
systems today use a smartphone as the medium to display the
live stream which adds to the challenge of finding the desired
target in the video frame. Figure 1 shows an example frame
from the display on a smartphone which shows how difficult
it can be to locate the actual UAV in the frame. In an effort

Fig. 1. Flying Small Unmanned Aerial Vehicle

to assist a user that desires to film a small UAV in flight, this
project sets out to be able to track a small UAV in real time.
Template matching and optical flow techniques are explored
in order to be able to reliable track a very small object in a
live video frame. In order to meet the requirements of a live
video stream, these techniques have been augmented to be
able to speed up the long computation time required in order

to localize the target within a frame.

Beyond the assistance of a user, there are a handful of
potential applications for the ability to track small targets in
the frame. The end goal is to be able to wrap a navigation
loop around the information from the image tracking in order
to be able to autonomously pan/tilt the camera and move the
vehicle in order to keep the target centered in the frame.

B. Background

In searching for algorithms used for feature tracking, two
different methods came up often: template matching and
feature tracking with optical flow.

1) Template Matching: Template matching is used to detect
and locate a portion of an image within the larger image.
Template matching can be improved if a frequency response
of the noise is known by a process known as matched filter,
but if the noise is assumed to be white noise, then matched
filtering and template matching are identical. The goal of
template matching is find a location in the image, at which
the mean squared error between the template and the image is
minimized.

E[i, j] =

∞∑
x=−∞

∞∑
y=−∞

[s[x, y]− t[x− i, y − j]]2 (1)

. Minimizing the mean squared error also equates to maximiz-
ing the area correlation between the image and the template,

r[i, j] = s[i, j] ∗ t[−i,−j] (2)

[1]Template matching works best when the portion of the
image, or template, is an exactly duplicate of what is found
in the larger search-space image; however, this method is also
produces acceptable results in the presence of noise. Template
matching is not robust to large changes in scale and rotation
between the template and its location in the image. For our
project, the metric of mean squared error was used and the
noise was assumed to be white noise. More details on our
implementation of template can be found in Section II.

2) Optical Flow: Simply put, optical flow is the measure
of how far a pixel move from one frame to another in a video
create. The knowledge of the travel of a set of pixels between
subsequent frames can then be used in order to determine
crucial velocity information of a specific target in a video
frame.

Optical flow is a commonly used technique for feature
tracking in a video frame and has many different possible



implementations. There are many different optical flow algo-
rithms available but they almost all rely on the comparison of
key features from one frame to another in order to determine
the motion information of those features. One of the more
widely used implementations found was the combination of
Shi-Tomasi good features and a Lucas-Kanade optical flow
algorithm.

The Lucas Kanade optical flow has a couple key assump-
tions that have to be valid in order for it to yield reliable
results: 1. Brightness constancy between frames, 2. Small
motion between points in ubsequent images, and 3. Points will
move like their neighbors [5]. In designing the algorithm used
in this project to be able to track a small UAV, it was critical
tobe able to satisfy these assumptions in order to be able to
use this optical flow technique.

C. Related Work

This project started as a follow on to Padial and Hammonds
EE 368 Project from Spring 2011 [2]. Their focus is more on
the detection and classification of aircraft rather than tracking.
In order to successfully classify an object, they relied on the
use of SIFT features and RANSAC. We explored similar tech-
niques, but found them to be inappropriate for our specification
application and goal. First, Hammond and Padial note that this
procedure ran too slow to work in real-time, which would also
not be appropriate for our projects goal. Also, in order to have
enough SIFT features to be used for classification, many of
their test cases they were trying to detect were fairly large
compared to the image. This is also not appropriate for our
project because we are trying to track objects that are relatively
small in the images. Other work focused on detection was
Obstacle Detection for Small Autonomous Aircraft Using Sky
Segmentation by McGee, Sengupta, and Hedrick [3]. The goal
of this work was to detect an aerial object, but segmenting
portions of the image as sky and non-sky regions. Since the
regions of sky were relatively uniform, an aerial object would
stand out in the sky region. Although this would be appropriate
for the small scale objects we are trying to track, our goal
is to track an object on a potentially changing background
(sky and ground). An aircraft may stand out on a blue sky
background, but not stand out when viewed from above with
land in the background. In their paper, Tracking-Learning-
Detection, Kala, Mikolajczyk, and Matas describe an algorithm
which is able to track a moving object based on an initial
template [4]. They detect all possible appearances of the object
in a frame and model the system as a discrete dynamical
system to determine whether the appearance is the object
being tracked. Also, they use a learning model to accumulate
different templates of the same object as it changes in a video.
The also use the learning model to accumulate false positive
templates, to help reject background objects that look similar
to the tracked object to improve performance. The work done
in this paper goes far beyond the scope of a class final project.
Some of the techniques used in this paper were explored and
implemented, but our goal was not to replicate or implement
their algorithm for a specific application.

II. METHOD

A. General Approach

The first step in the algorithm designed is to get user input
as to the object to track. This provides the initial template for
the template matching and the initial good features for the
optical flow.

The first options explored were the use of solely template
matching or optical flow in order to do the live tracking of
the small UAV in a video frame. Unfortunately neither of
these by themselves were able to process quickly enough in
order to make them effective for live tracking. As a result an
alternative approach was taken which was heavily influenced
by experience in navigation.

Instead of simply using just template matching or just
optical flow on the entire image, the goal was to leverage
known information about the target being tracked. Tracking
a small UAV means that the object will be constrained to
a certain set of physically realizable motions that can help
reduce the search space for template matching and optical
flow. The idea then was to use a motion model of the vehicle
in order to minimize the amount of the image being searched.
In the process developed, shown in figure 2, for each new
frame, the motion model is used in order to update the search
area for template matching. Once the template is matched
and the target is found, optical flow can be used to provide
updated velocity information to feed back into the motion
model to be used in the next frame. Using a motion model to
reduce the search area also provided for the added benefit of
reducing the number of false positive detections of elements
in other parts of the video frame. In this process, the motion

Fig. 2. General Tracking Approach

model is key to be able to reduce the search space to a
reasonable size in order for both the template matching and
optical flow to run smoothly on a live video. The motion
model, shown in equation 4, is deceptively simple.

i′ = i+ δi+ ε (3)
j′ = i+ δj + ε (4)

For each new frame, the corners of a new search area (i, j)
are determined by updating the corners of the previous search
area (i, j) by the motion δI and δJ .

B. Template Matching and Updating

Our approach to template matching involves four steps
as show in figure 3. First, a motion update is performed to
estimate the location of the aircraft in the new frame using



Fig. 3. Template Matching Steps

our motion model. This reduces the search area for template
matching to a box around this location along with giving us a
probabilistic estimate of where the aircraft is in the new frame.
The motion is assumed to be normally distributed around the
expected value as shown in equation 5.

P (i′, j′|i, j, δi, δj) ∝ e
−((i′−i)2+(j′−j)2)

σ2v (5)

Next, template matching is performed within this limited
search space using mean removed, normalized grayscale im-
ages. The results of the template matching are assumed to also
be normally distributed as shown in equation 6.

P (i′′, j′′|i′, j′, Tt−1,Ft) ∝ e

∑
i,j

(Ft(i+i′′,j+j′′)−Tt−1(i,j))2

σ

(6)
The next step is to multiply both the motion probability and
the template matching probability for a total probability. The
updated position estimate is chosen to be the max likelihood
position of the total probability. The final step is to update
the template by selecting the pixels in the appropriately
sized region around the update aircraft position estimate. The
updated template is used for the matching in the next frame of
the video. The initial template to be used is chosen by the user.

The template is updated from frame to frame to account
for changing perspectives on the vehicle throughout time.
At a high enough frame rate, the perspective on the vehicle
does not change significantly between two adjacent frames
as shown in figure 4; however, the perspective of the vehicle
is significantly different between two temporally separated
frames. Another reason for updating the template is due to

Fig. 4. Vehicle Perspective Changes

changes in the background in the template. Two adjacent
frames will have similar backgrounds, but as shown in figure
5, the relative intensity of the background (compared to the
vehicle intensity) changes significantly throughout time. Due
to some of the template including background pixels, not
changing the template could result in background correlation
outweighing the correlation of the object to be tracked.

Fig. 5. Template Background Changes Over Time

In order to account for scaling changes over time, template
matching is also done with a template 10 percent larger
and 10 percent smaller than the original template. The size
template which performs best out of the three on the total
probability is chosen as the next template size. This allows
the template to grow and shrink as the scale of the target
aircraft increases and decreases. The test cases used were
quadcopters, so many of the templates were near-square in
shape. Similar consideration could be given to rotation to
tracking an aircraft, where at times a more rectangular shaped
template is appropriate. In such a case, frame to frame the
template would not change shape very much, but over time
the template would need to change shape.

C. Optical Flow

In order for optical flow to yield reliable results there are
three key assumptions made about the frames of the video:
1. Brightness constancy between frames, 2. Small motion
between points in subsequent images, and 3. Points will move
like their neighbors. Some considerations needed to be made
in order to make all three of these assumptions valid.

Working backwards, the third assumption may not be
globally valid across the entire frame, but since the user
is selecting the initial template to be used, by limiting the
points to points within that template we can ensure that
points will move like their neighbors for the most part. The
small motion assumption is satisfied if the frame rate of the
video is fast enough to be greater than the travel motion of
the vehicle which brings the requirement of being able to
do fast computation of the tracking algorithm. Finally the
brightness constancy is definitely not valid across the entire
video, especially if the object is moving in very different
parts of the screen. However an assumption is made that
between local frames that holds true and therefore if good
features to track are updated periodically on the new template,
it will ensure that the brightness constancy requirement is met.

Updating the good features periodically with the new
template also helps to ensure the ability to track a small UAV
even under different orientation changes throughout the flight.

Using the available functionality within openCV for optical
flow, the overall process is straightforward. First a set of
good features is required in order to do the tracking and
is determined using openCV to get a set of Shi-Tomasi



good features. With these features, the optical flow can be
calculated using openCVs pyramid implementation of the
Lucas-Kanade method. From here the average velocity of all
the good features can be determined in order to update the
motion model.

For the motion model update it was determined that δI
and δJ are best not as simply the difference between two
frames. It was found that the motion model was much more
reliable by using a moving average of the velocities of the
objects, as velocity can be a very noisy measurement.

III. EXPERIMENTAL RESULTS

A. Matlab

The template matching was tested using pre-recorded
videos in Matlab of a quadcopter flying over two backgrounds.
In the first, a quadcopter taking off was recorded from a
stabilized camera on another station quadcopter. The second
video is taken of a quadcopter with a sky background.
Neither incorporates optical flow into the motion model
because that was only implemented on Android so the
observer is assumed to be stationary. Template matching was
implemented but not tested on Android. Matlab testing of the
template matching does not incorporate changes in scale or
rotation to the template (Android implementation incorporates
scale changes).

The results from the first video can be seen in figures
6 and 7. A color version of the template is shown in the first

Fig. 6. Test Case #1 Template

frame. In figure 7the vehicle path (blue line) with the final
template (yellow box) and the final search area box (green
box). The bottom of the figure shows the template used for
the searching and the resulting template found along with the
complete search area. On the right hand side of the results,
the template matching mean squared difference results, the
template matching probability, the motion probability, and
the resulting total probability is shown for the entire search
area. This particular frame is significant because it shows
the need for the motion model. The results of the template

Fig. 7. Test Case #1 Results

matching by itself shows a high probability area centered
near the bottom of the search area. Including the motion
model in the total weight, lowers the probability of this false
positive result, which results in the correctly chosen vehicle
position. Qualitatively, this example performed better when
the initial template size was chosen tight around the vehicle
to reduce the amount of background pixels in the template.
If the template was chosen too large, the vehicle would
drift from the template, especially in the lighter intensity
background where the vehicle is close in intensity to the grass.

The results from the second video can be seen in figures 8
and 9.

Fig. 8. Test Case #2 Template

The observer also pans the camera during this example.
Due to uncertainty in the camera motion, the variance in the
motion noise to better fit the problem. The performance of this
example was not as robust as the first example because of this
higher uncertainty in the motion and due to a smaller scale
on the quadcopter. Since the background was uniform, this
example was found to perform best when the template was
not as tight around the tracked aircraft as the first example.
Otherwise, the tracked aircraft would drift from the template
due to the observer motion not accounted for in our motion
model. With an appropriately sized template and well-tuned
parameters, the aircraft could be tracked for a while before



Fig. 9. Test Case #1 Results

TABLE I. APPROXIMATE FRAME RATE ON MOBILE DEVICE

Method Search Area Approximate Frame Rate
(fps)

Optical Flow Entire image 3-4
Optical Flow Motion limited 13-15
Template Matching Entire image 3-4
Template Matching Motion limited 10-12

drifting out of the template. Future consideration should be
given to ensure that this drift is minimalized, possibly using
the originally chosen template or a subset of past templates.

B. Android

The end goal was to be able to run the image processing
algorithm on an android phone in real time. Frame rate of
the video was an important metric in being able to make sure
that the algorithm used was able to truly run in real time.
As seen in table I, neither optical flow by itself or template
matching on the entire image would be suitable for real time
processing due to the very low frame rates provided. Using the
motion model to reduce the search area allowed for drastically
reducing computation time and therefore increasing the frame
rate. Unfortunately the entire algorithm together has not been
implemented on the Android phone yet, but we are confident
in being able to achieve the desired frame rate of 10 fps.

The optical flow portion of the algorithm was successfully
implemented on the Android phone and a screenshot can
be seen in figure 10. In the testing done with the phone,
the optical flow algorithm seemed to be extremely sensitive
to the parameters used to determine the good features to
track. In some cases where the UAV was too small in the
frame it required very loose parameters in order to determine
any good features, but this would also lead to tracking
undesired background features that resulted in very poor
performance of the optical flow. When the UAV was a
bit larger in the frame and good features were able to be
found it was able to provide very reliable velocity information.

It was also seen that the velocity information was rather noisy

Fig. 10. Test Case #1 Results

and therefore would require some filtering and smoothing
before being able to be used in the motion model reliably.

IV. CONCLUSIONS AND FUTURE WORK

Overall the initial phases of the algorithm developed here
performed fairly well in the Matlab testing done. The use
of a motion model to reduce the search area significantly
reduced both processing time (and therefore increased frame
rate) and false detection rate (by only searching the area
around the template). A lot of challenges were faced with
the integration of the algorithm into Android, but that is
still in active development as we hope to get this process
successfully running on the Android phone.

An area of continuing work on this would be to be
able to integrate the tracking of a target in a video to the
control and navigation of another UAV in order to keep the
target centered in the frame. In order for this to happen, the
algorithm will have to be able to take into account the motion
of the camera in order to successfully keep tracking the UAV.

Eventually, instead of just having the optical flow in
the feedback path of the algorithm, it can also be used in the
feed forward path in order to cross check the results of the
template matching to help make the algorithm more robust.
This can potentially be done with kmeans clustering, using
2 clusters, one for background velocity and one for object
velocity, and training on the previous frame and categorizing
on the next frame.

APPENDIX

DIVISION OF RESPONSIBILITY

Most of the work was done collaboratively, but Adrien
Perkin’s area of responsibility was the Optical Flow and Steven
Krukowski’s area of responsibility was the Template Matching

REFERENCES

[1] B. Girod, Template Matching 2, EE 368 Digital Image Processing,
Stanford University, 2013.

[2] M. Hammond and J. Padial Automatic Aircraft Detection and Classifica-
tion in Cluttered Environments, EE 368 Digital Image Process, Stanford
University, 2011.



[3] T. McGee, R. Sengupta, and K. Hedrick. Obstacle detection for small
autonomous aircraft using sky segmentation. Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Confer-
ence on. IEEE, 2005.

[4] K. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 34.7
(2012): 1409-1422.

[5] J.Y. Bouguet Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm, Intel Corporation 5, 2001.


