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Abstract— We implement lane detection using edge detection, 

Hough transforms, and vanishing point filtering in Hough space; 

the car detection is implemented by using histogram of oriented 

gradients feature descriptors and classified by linear support 

vector machines. Hard-negative mining is applied to alleviate 

detection of false positives; with the information of vanishing 

point along with prior knowledge such as the width of the lanes, 

we reconstruct the 3D ground plane and estimate the distance 
from the camera to the cars in the front from monocular vision. 

Keywords—Car detection, Lane detection, Hough transform, 
HOG, SVM, hard negative mining. 

 

I. INTRODUCTION 

On-road vehicle and lane detection is critical for the safety 

of a self-driving automobile system. When a vehicle changes 

lane, the location of the lanes, the vehicles on the lanes, and 

the distance from itself to other vehicles need to be accurately 

measured. Many algorithms for vehicle and lane detection 

have been proposed and will be briefly reviewed in Section II. 

Accurate distance measurement often rely on active detection 

systems such as Radar or Ladar. The distance estimation 

method proposed and implemented in this report is meant to 
give only a rough estimate of the distance from the object to 

the camera from monocular vision and is not the focus of this 

work. Therefore, we will not review the prior works on 

distance measurement in detail.  
 

II. PRIOR WORKS 

A. Lane Detection 

King Hann Lim et al. [1] used the bottom region in an 

image to statistically find the pixel color range of the road 

surface to generate a map locating the lane region, performed 

an edge detection using Sobel filter, and then weighted-

gradient Hough Transform was employed to identify the lane 

markings. Yue Wang et al. used Canny/Hough Estimation of 

Vanishing points and B-spline to fit the lane in the images. [2] 

And Qiang Chen et al. used hyperbola fitting for a real time 

lane detection system [3]. 

B. Car Detection 

Many vision-based techniques have been developed to 

detect vehicles in various road scenes. A good review of 
vehicle detection has been described in [4], including: 

Tzomakas and Seelen [5] detected vehicles based on the 

shadows underneath them; Khammari et al. [6] applied a 

horizontal Sobel filter on the 3rd level of the Gaussian 

pyramid to obtain local gradient maxima where a vehicle 

candidate is located. Then a bounding box was extracted by 

verifying the horizontal symmetry; Claudio Caraffi et al. [7] 

used a WaldBoost [8] trained sequential classifier applied 

within a sliding window framework, which is an AdaBoost-

based algorithm automatically builds a fine-grained detection 

cascade of the Viola and Jones type; motion-based methods 

such as optical flow are also commonly used for vehicle 
detection [9]. 

III. ALGORITHMS 

A. Lane Detection 

For lane detection part of this project, we designed and 
implemented our own algorithm from scratch based on the 
knowledge we learned from the class. The algorithm we 
developed is based on two main operations: edge detection and 
Hough transform, where the 1D Prewitt gradient filter in 
horizontal direction is used in edge detection. 

 The algorithm is designed to detect straight lines in the 
image. Furthermore, based on the knowledge in 3D 
reconstruction, if we project parallel straight lines on a plane in 
3D space to a 2D image with a view angle not perpendicular to 
the plane, the parallel straight lines will be projected into 
straight lines passing through one point on the 2D image, 
which is called vanishing point. An example of vanishing point 
is shown in Fig. 1. In our algorithm we extract vanishing point 
and use its position to detect lanes from many false positive in 
Hough transform. 

In the first few frames of the algorithm, it is working on 
initializing the system by finding the vanishing point. In these 
few frames, the filter used is a hard filter just removing lines 
close to horizontal direction. Images from each step are shown 
in Fig. 2. 

  



 

Fig. 1 Example of vanishing point. Here the four parallel lines 
from a pair of train track is imaged as four lines passing 
through the vanishing point (Source: 
http://www.vertice.ca/index.php/2012/sonic-vanishing-points/) 

The algorithm in initialization steps check the variance of 
the intersections of the detected lines (more than 2 lines). The 
vanishing point is being set as the mean of the intersections 
once the variance of the intersection is smaller than 50 pixels.  

 

Fig 2. Image from each step a) Original image from one frame, 
b) Edge detection with Prewitt gradient filter in horizontal 
direction, c) Hough transform of detected edges, d) Hough 
space after removing horizontal lines by hard filter, e) result. 

After knowing the vanishing point, we used vanishing point 
filter in the Hough space, which removes all the line that not 
pass through a 20-pixel circle around the vanishing point. The 
filter Hough space after applying vanishing point filter is 
shown in Figure 3. 

 

Figure 3. Vanishing point filtering in Hough space. a) before 
filtering, b) after filtering.  

 Furthermore, lane tracking is applied to remove noise that 
only appears less than 5 frames and the tracked lane is labeled 
as detected if it’s missing less than 5 frames. The lane tracking 
code is modified from MATLAB example [10].  

B. Car Detection 

 Car detection is achieved using histogram of oriented 
gradients (HOG) descriptor in conjunction with a linear 
support vector machine. Both positive and negative data are 
needed for training. Hard-negative mining (HNM) explicitly 
includes false positives into negative training data, based on 
probabilities. The false positives are retrained after evaluation, 
and the process of HNM is repeated several times. The model 
is then applied to test images. Information from lane detection 
is used to remove false detections at regions outside lanes. The 
following diagram in Fig. 4 summarizes the algorithm [11]. 

                  

Fig. 4. Process flow of training and testing the detection of 

cars 

 
The positive training data are from [12], and they are 

mostly rear views of cars that occupy a substantial portion of 
the image. There are also front views of cars included.  All 
positive data images contain information of background scenes 



that later proved to degrade the performance of the detection. 
The initial negative training data are from [13]. The negative 
data are mostly street scenes that do not contain cars. They are 
dynamically increased after each iteration of the HNM process. 
Some examples of positive and negative data are shown in Fig. 
5 below. 

 

Fig. 5. Examples of (a) positive and (b) negative training data 
([12, 13]) 

HOG descriptors of both positive and negative samples are 
then extracted. The algorithm of HOG feature extraction is as 
follows [14]. A detection window is scanned across the image 
at different scales. Each window is divided into smaller cells. 
For each cell, a local histogram of gradient directions is 
computed over the pixels. The cells are then grouped into 
blocks for contrast normalization, which would improve 
robustness against illumination. The normalized blocks are 
then vectorized and referred to as the HOG descriptors. We 
implemented HOG descriptor using VLFEAT vl_hog function 
with 8×8 cell size. An example image and its HOG features are 
shown in Fig. 6 below. 

 

Fig. 6. An example resized training image (a) and its HOG 
features (b) 

The HOG descriptors are then fed to a linear SVM for 
classification. If the classifier incorrectly classifies a non-car 
object as a car in a sliding window, the feature vector of that 
false-positive patch is recorded. This method is called hard-
negative mining [11]. The false positives are evaluated 
according to their probabilities and are added to the negative 
training data to go through the training process again. We 
found that a single iteration of HNM is usually not enough to 
generate satisfying results. The car detection results shown in 
this report use 5 iterations. 

 After training, the classifier is applied to test images. When 
an objected is detected to be a car with a probability above a 
threshold, a bounding box is drawn. Several bounding boxes 

may appear at nearby locations of a detected object. We use 
non-maximum suppression to eliminate the redundant detector 
responses. Only a few boxes with top scores are kept 
considering multiple occurrences of cars in an image. A test 
image with detected cars is shown in Fig. 7. 

 

Fig. 7. Detected cars with bounding boxes and scores in a test 
image 

C. Distance Estimation by 2D Projection 

In this section, an algorithm mapping 2D image from 

camera to 2D plane on the ground is developed. Real 3D 

reconstruction requires stereo-camera. Here we estimate the 

distance from a 2D monocular vision with an assumption that 
the camera matrix (K) has been calibrated beforehand. The 

algorithm is illustrated in Fig. 8 and the procedure goes as 

follows: (i) From the vanishing point (v) calculated in the lane 

detection, the direction of the lanes in 3D space can be derived 

from 
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3
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 . (ii) Mark 2 points p1 and p2 on 

each of the lane boundaries, then calculate the two 

corresponding lines in 3D space 
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. (iii) By imposing 

assumptions that the distance from the camera to the ground 

plane (Zcam = 1.6m) and the width of the lane (Dlane = 

3.6m), we can calculate P1 and P2 in 3D space. (iv) With P1 

(or P2) and 
3D

d , the ground plane can be reconstructed and 

any point in the 2D image on the ground can be used to 

estimate the distance in the 3D space. From Fig. 9, the lanes 

are quite straight and parallel to each other in the ground plane 

projection. This shows that by knowing the camera matrix and 

direction of ground plane, a single view 2D image to ground 

plane projection is possible. After constructing this projection, 

the bottom lines of the bounding boxes of cars are projected to 

the ground plane and distance information can be extracted 

from there.  

 

 
Fig. 8. Illustration of the algorithm and assumptions of 

estimating the distance from a detected object to the camera. 
 

 



 
Fig. 9. Projection of 2D image to ground plane: a) original 

image, b) projection to ground plane (vertical axis not to scale 
for illustration). 

IV. RESULTS 

A. Training performance: 

The precision and recall curve shown in Fig. 10 

quantitatively illustrates the performance of the hard-negative 

mining process. Threshold used in PASCAL VOC [15] is set 

to be 0.1. Precision is defined as TP/(TP+FP); recall is defined 

as TP/(TP+FN), and accuracy TP/(TP+FP+FN), where TP is 

true positive, FP is false positive, and FN is false negative.  

 
Fig. 10. Precision, recall, and accuracy as a function of 

number of iterations of HNM in the training process 

 

As the number of HNM process increases, all three 

parameters increases, meaning the HNM contributes 
constructively to the training process. The performance shows 

the trend of saturating when the number of iterations reaches 

5, which is the parameter that we used in this project. 

 

B. Good results: 

Qualitative analysis of our algorithm running on several 

datasets is shown below with screenshots of the demo video. 

Good results are shown in Fig. 11. We can see there that 

lane and car detections both generate satisfying results. The 

yellow lines match the lanes, and the bounding boxes enclose 

the detected cars. The distance estimation is not very accurate 

due to the variation of size of bounding box between frames, 

but we can get a rough idea of the distance of detected car 

from our car. Besides, the algorithm generally underestimates 

the distance, which is a safe result for self-driving automobile 

applications. 
 

 
 

Fig. 11. Four screenshots of well-detected objects using 

dataset from KITTI [16] 

 

C. Bad results: 

In Fig. 12, two bad frames of detection are shown. In 

frame a, the algorithm is detecting a false positive on the 

divider right next to the outer lane. This false positive cannot 

be removed by the vanishing point filter, because the divider 

is parallel to the lane and the height of it is close to the 
ground, which makes the line to be too close to the vanishing 

point. The front view of the incoming car is not detected (false 

negative) due to the fact that there are more rear views in the 

positive training data than front views. 

In frame b, there’s a false negative in lane detection. The 

false negative is from the suppression neighborhood used in 

the algorithm searching peaks in Hough spaces. We set 

constant spacing for the suppression neighborhood, causing 

one of the lanes being neglected in frame b. The algorithm can 

be improved by considering the Hough space spacing from a 

3D construction point of view. There are also overlapping 
bounding boxs in frame b in car detection, resulting from an 

inappropriate threshold set in the non-maximum suppression 

and can be remedied easily. 



 

 

Fig 12. Two screenshots of our algorithm running poorly on 

dataset from KITTI for lane detection. 

 

    Fig. 13 shows the distance estimation error compared to one 

of the video, with the ground truth measured by Velodyne HDL-

64E Laserscanner. While the mean error is about -40 %, the 

correlation between the estimation and the ground truth is 

reasonably linear. 

 
Fig. 13. Distance estimated from 2D monocular-vision image vs. 

the ground truth. 

V. DISCUSIONS 

In this section we discuss the difficulties faced in our 
detectors and propose potential techniques to resolve these 
issues.  

• The current lane detector does not consider the 
detection of curved lanes. Here we briefly discuss one potential 
method to do so. Assuming the curvature of the curved lanes 
are small, then the lane markings close to the bottom of the 
image (i.e. close to the camera) will appear nearly straight in 
the image. Therefore, we can still detect the near lanes and 
calculate the vanishing point. With the information of the near 
lanes color and location, we can gradually move the window 
upward and detect the lane marking within the local window, 
which should have similar color and smooth transition to those 
appear close to the bottom. Occlusion and lighting effect may 
affect the detection performance so some sophisticated tricks 
will be needed. 

• The current lane detector still suffers from occlusion 
and variance of lighting effect. Although pieces of the lane 

marking can be detected as the peaks in the Hough space even 
with occlusion, there are usually several line-like features in 
the image which may have signals stronger than the real lane 
boundaries resulting in false detections. To improve the lane 
detector, we can utilize the knowledge of some lane markings 
detected in the previous frames that consistently show strong 
signals. For example, the two lane boundaries right beside the 
car are in general easy to detect and have stronger signals 
across the frames. With the information of the lane marking 
color, we can raise the weight of the pixels that have similar 
color; in addition, with the vanishing point and the prior 
knowledge of the approximate width of the lanes, we can 
predict where the next lane boundaries should be and narrow 
down the searching window. 

• There is a big room to improve our car detector. One 
major problem is the difficulty of dealing with occlusion: when 
part of a car is blocked in the image, e.g. by another car, the 
detector usually fails. This problem can be mitigated by using 
object tracking as proposed in [17]. In a sequence of frames, 
there is a good chance to detect a car without being occluded; 
once the car is detected, the program needs to keep tracking 
this car so that it can be detected even with occlusion. Another 
benefit of tracking the cars is for speed-up because the 
searching does not need to cover the entire image. 

Another simple trick that should improve the performance 
is to find a better training data set. The data currently used for 
training is not “clean” enough, i.e. there are many other 
unnecessary information in the image besides the cars. We 
extract the ground truth bounding boxes form 5 different data 
sets labeled as the “Clean” data, as illustrated in Fig. 14, to 
train the SVM model and test the model on another testing set 
different from the 5 data sets. In Fig. 15 we plot different 
detection performance metrics versus the matching threshold 
(i.e. the bounding box overlap with the ground truth should > 
threshold in order to be claimed as a correct detection). As a 
reference, a threshold of 0.5 is used in the PASCAL VOC [15] 
as the detection criterion. Clearly the “Clean” data greatly 
improves the performance, especially the recall, and the 
detected bounding box will also be tighter, which in turn 
improves the distance estimation.  
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Fig. 14. Upper row: “Clean” training data with tight bounding 
box; lower row: “noisy” training data with loose bounding box. 

 

Fig. 15. Detection performance metrics versus the matching 
threshold (i.e. the bounding box overlap with the ground truth 
should > threshold in order to be claimed as a correct 
detection). 

 

In addition, our current detector does not take the 
advantage of the RGB information, which should be useful 
because a car usually has a uniform color. 

• For all kinds of detectors, parameter optimization is of 
great importance because various scenarios need to be 
considered. For example, in the lane detector, having a higher 
threshold in the selection of the Hough peaks can be helpful 
when there are many weak lines (e.g. utility pole) in the 
frames; while in a clean frame but with lower resolution or 
darker lighting, a lower threshold is desirable. One major 
drawback of this work is that we do not establish a thorough 
evaluation platform to enable efficient parameter optimization, 
which is something we should implement in the future. 
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Appendix 1: Contributions: 

Algorithm design and evaluation: All three members 

Lane Detection: Yu-Po Wong 

Car Detection: Xuerong Xiao 

Distance estimation and integration: Chi-Shuen Lee 


