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I. INTRODUCTION

Depth of field, both a focus and depth cue, is not currently
implemented in wearable virtual reality displays today even
though there is evidence that suggests it could significantly
improve the immersive experience. In this project I have
investigated different depth of field rendering algorithms that
give accurate reproductions of depth of field (retinal blur) on
scenes displayed in virtual reality.

Depth of field, also known as the effective focus range, is
the distance between the nearest and farthest objects in a scene
that appear to be in focus. Even though lenses are only able
to focus at precisely on distance, the decrease in sharpness is
gradual around around the focal plane. Within a certain range,
the sensor (the retina in the case of the human visual system)
is not able to register these small changes. Depth of field is
a property of optics in the physical world and the human
visual system has evolved to use this information to better
understand scenes. Current virtual reality implementations do
not implement depth of field rendering and have effectively
removed an entire source of information. Because of this,
entire scenes are in focus, which of course is perceptually
inaccurate. An example of a scene rendered without and with
a DOF can be found in Figure 1.

Fig. 1: Images depicting VR scene without and with DoF.

II. RELATED WORK

A. DoF effects on visual system

Not only is the removal of depth of field perceptually
inaccurate, but there has been research showing that we have
come to rely on this information as a source of cues for both
depth and focus.

In [1],it is shown that gaze contingent depth of field render-
ing can improve subjective perceived realism and depth, which
aided users in judging the absolute depth of objects. The paper
also presented data showing that a gaze contingent DOF aided
in ordering objects and judging distances between objects.

Therefore, adding DOF into VR systems would increase our
depth perception.

Simulated DOF rendering, when used with stereoscopic
displays as shown in [2], has been shown to decrease the fusion
time of two images as well as increase fixation stability. The
paper developed a method of presenting gaze-contingent blur
in order to study the above effects. In [3], it has been shown
that a perceptually correct depth of field simulated reduces the
amount of visual fatigue experienced by users.

B. Accurate depth of field

Although there have not been any user studies performed
comparing the effects of different depth of field simulations
on the human visual system, I expect having accurate depth of
field is key in achieving the results explained above. In 2008
Barsky compiled a survey of a collection of depth of field
rendering techniques used in computer graphics [4].

In the survey, Barsky classifies techniques into two broad
categories: objects space and image space methods. Object
space methods are built directly into the rendering pipeline and
operate on the 3D scene in order to generate depth of field
effects. Image space methods, are a post-processing method
which operate on images and their corresponding depth maps.
The images and depth maps are obtained at the output of
the normal rendering pipeline. Each pixel in the image is
blurred using information about the camera model and depth
map. In general, object space methods create more accurate
results and are subject to fewer artifacts than their image
space counterparts. However, there is a trade off. Image space
methods are much faster. As explained in the next section,
speed is critical for VR applications and we therefore are only
interested in exploring image space techniques that are able to
run in real time ( < 100 ms per frame).

Image space methods must be carefully tuned in order to
avoid the following artifacts in the resulting scene. Intensity
leakage is the case where a blurred background blurs on top
of an in-focus foreground. In a real image, this never occurs
and must be handled appropriately by the post-processing tech-
nique. Depth discontinuity artifacts occur when the silhouette
of a blurred foreground object is sharp, even if the background
is in focus. These artifacts occur when the depth map changes
abruptly. The final artifact can possibly occur even if a depth
discontinuity is handled correctly. In real image, a blurred
foreground will have soft edges and some portions of the
background will be visible. Because image space methods
operate on images generated from an effective pinhole camera,



the colors behind the foreground object are not known, and
this artifact cannot be handled accurately with only one image.
Ideally, all of these artifacts would be accounted for, but this
requires the creation of complex and often time consuming
methods.

C. Latency

As shown above, adding an accurate depth of field effect
back into stereoscopic displays, like current virtual reality
displays, is shown to have benefits for depth perception, fusion
time, and visual fatigue. However, simulating an accurate depth
of field requires at least one additional rendering pass in the
rendering pipeline. This additional time is critical. Virtual
reality systems today are very sensitive to latency of the
display. If the latency to display is too high, a lag develops
between head motion and what we see. This conflict between
the vestibular system (inner ear) and the visual system has
been shown to develop strong sickness in many cases. Also, as
shown in [5], a low latency system provides a more immersive
experience for the users. In the paper, users were presented
two rooms, one non-threatening and one designed to evoke
fear/stress, at different latencies. They showed that users under
the lower latency system had a higher self-reported sense
of presence and a higher change in heart rate between the
two rooms than those exposed to high latency conditions.
Therefore, although we are attempting to create a perceptually
accurate blur we are constrained by the latency induced by the
additional rendering.

III. DEPTH OF FIELD ALGORITHMS

A depth of field is created when light traveling along
different paths through an aperture of a lens is integrated on
the ”sensor” (retina in the case of the human visual system).
All depth of field simulations somehow approximate this fact.
Solutions range from stochastic sampling with ray tracing to
basic filtering based on circles of confusion [6].

Because of the limitations on latency, I focused on image
space DOF techniques. I implemented and compared the
accuracy and latency of three different image space methods.
I bench marked the three methods against a reference depth
of field result generated by an accurate, but slow, object space
method. The methods are described in the following sections.

A. Reference Depth of Field

In order to create a reference image, I used an object space
technique that is a form of ray tracing, and implemented it in
OpenGL. A scene is rendered from various discrete points over
the aperture, simulating light traveling along different paths.
The perspective matrix is adjusted at each sample location.
I used 55 sample locations, which can be viewed in Figure
2. These 55 images were then averaged together, forming the
reference depth of field result. This object space method is
slow, because the scene must be rendered 55 times for just
one output frame, but does not suffer from the artifacts named
above.

Fig. 2: Positions of 55 sample locations used to sample
aperture

B. Adaptive Circle of Confusion Based Filter

The adaptive circle of confusion based filter closely follows
the filter described in [7]. This adaptive filter chooses weights
dynamically based on the circle of confusion of each pixel
and is able to account for intensity leakage. The weights at
each pixel are chosen based on 3 factors. The first factor
dictates whether a sample pixel effects the center pixel (of
the filter). A sample pixel P makes no contribution to a
center pixel C if its circle of confusion does not overlap with
C. The circle of confusion (originally defined on the focal
plane) must be scaled into pixel space. The second factor
is an approximation to the light intensity function which is
too complex to implement practically in a pixel shader. It is
approximated as the reciprocal of the square of the radius,
assuming a uniform intensity across the circle of confusion.
The third factor directly addresses intensity leakage which
reduces the effect that a sampled pixel P has on center pixel
C, if P is ”behind” the focal plane. If this is the case then P
is scaled by a factor proportional to the radius of the circle of
confusion of the center pixel. Effectively, if C is close to the
focal plane, its circle of confusion will be very small hence
attenuating P greatly. If C is away from the focal plane the
attenuation factor will be small. If P is closer to the camera
than the focal plane then its value is unchanged.

The paper proposed approximating this adaptive filter as
a separable filter, using two 1-D filters, in order to reduce
latency. However, this filter is blatantly non-separable. Because
graphics compute power has increased greatly since 2007, I
decided not to use the approximation in order to gain better
accuracy. Compute power has increased so much in fact that
the non-separable version rendering a 1080p screen was able to
outperform the separable version, running on 2007 hardware,
rendering a 512⇥ 512 px image.



(a) Reference (b) Adaptive 2D CoC (c) Bilateral Filtering (d) Adaptive Recursive Filtering

Fig. 3: Images showing the the outputs of the different algorithms for the two implemented scenes. Both of the scenes meant to
have the foreground in focus: the dark chess piece in the top row and the wooden plant in the bottom row.

Adaptive CoC Filter Bilateral Filter Adaptive Rec. Filter
PSNR (dB) 30.9953 29.8669 30.0275

HDR-VDP-2 59.8957 56.9642 58.4918
Latency per pixel (ms) 0.559 0.065121 0.111666

TABLE I: Comparison of Depth of Field Rendering Algorithms.

C. Bilateral Filter

Many post-processing techniques based on Gaussian fil-
tering suffer from intensity leakage, because edges are not
preserved in Gaussian filtering and blurred background pixels
bleed into in-focus foreground pixels. I took advantage of the
edge preserving capability of the bilateral filter proposed by
[8]. In order to prevent intensity leakage, which occurs along
depth edges, I replaced the range filter with a depth filter which
is used if a pixel is closer than the focal plane. This accounts
for intensity leakage.

D. Adaptive Recursive Filtering

The final image space method that I used is an adaptive
recursive filtering technique described in [9]. The filter is
interesting because it does not approach the problem with the
standard a standard 2D filter. Instead it recursively filters an
image first from left-to-right, then from right-to-left, then top-
to-bottom, and finally bottom-to-top. This process is performed
three times to produce the desired result.

First, the circle of confusion of each pixel is computed.
Then the scene is segmented into 3 regions: foreground out-
of-focus (FOR), in-focus (IR), and background out-of-focus.
Depending on the regions of two adjacent pixels, different
weights are assigned to the pair. Four different cases exist:
both pixels are in IR,FOR,or BOR; one is in IR and the other
in FOR; one is int IR and the other in BOR; and one is in FOR
and the other in BOR. I used the same weighting functions
defined in the paper. The weights only have to be computed
once for the left to right and right to left recursion, and once
for the top to bottom and bottom to top recursion, because the
weights are only dependent on the depth of the pixels which
do not change in the recursive process.

IV. RESULTS

As mentioned earlier, I gather the images and depth maps,
along with the images sampled over the aperture to generate
the reference image, in C++ using the OpenGL library. Using
these images and depth maps, I implemented each of the image
space techniques in Matlab and measured their ”distance” to
the reference image using two metrics, PSNR between the
luma components of the image in Ycbcr color space (because
we are most sensitive to the luminosity of images) and the
HDR-VDP-2 metric defined in [10]. The HDR-VDP-2 metric
is based on a calibrated visual model that can reliably predict
visibility and quality differences between image pairs. I com-
puted these results for two different scenes, with two different
focal planes for each scene: near and far. Overall PSNR and
HDR-VDP-2 values were generated for all 4 scenarios. The
metrics along with computation time (per pixel) can be seen
in table I. The computation times are not meant to be repre-
sentative of how quickly these methods will run on a GPU,
but rather to see the relative performance of the algorithms. As
a benchmark, the adaptive filter based on circles of confusion
algorithm was implemented in OpenGL and takes 7.67 ms
to blur an entire frame. Per pixel performance is measured
because the depth of field algorithms will be implemented on
the GPU and operate on each pixel individually.

As seen in the table, the Adaptive 2D filter based on
circles of confusion performs best both in terms of PSNR and
HDR-VDP-2, but is also the slowest. The bilateral filtering
algorithm performs the worst, but also happens to be the fastest
method. The adaptive recursive filter performs slightly worse
than the Adaptive CoC filter, but shows a significant decrease
in computation time.



V. DISCUSSION

The errors in the bilateral filtering algorithm can be par-
tially explained by preserving all edge discontinuities, even
ones that should be blurred. For example, in Figure 4 the
edge is part of an out of focus background, but its edge
is perfectly preserved. This edge should be blurred, and is
handled correctly by the Adaptive CoC filter. After looking
through the literature, this error can apparently be corrected by
creating an adaptive bilateral filter that takes into the account
the distance of a pixel from the focal plane. This would reduce
the effect of the depth filter for edges that are far from the focal
plane.

For any of these depth of field algorithms to have an impact
on the state of VR today, eye tracking must be made available.
The focal plane must be set dynamically as the user looks
around the screen. There is work being done on eye tracking
for headmounted VR displays, but there are still very few
options. For the demo, I showed a quick and easy hack to
show users the effect of depth of field rendering. I averaged
over the middle 30⇥ 30 px region of each eye using gaussian
weightings to choose the focal plane. If the users were able to
look towards the middle of the screen, they could move their
heads around the scenes to control the depth of field rendering.
This of course is not a good replacement to eye tracking, as
people tend to fixate on objects as they move around the scene,
but users can have a better idea on the effect of depth of field
rendering

(a) Bilateral Algorithm (b) Adaptive COC Algorithm

Fig. 4: Image showing artifact created by the Bilateral Filtering
Algorithm.

VI. CONCLUSION

I explored different depth of field rendering algorithms for
the purpose of VR applications. It has been shown that adding
depth of field rendering to stereoscopic displays improves
depth perception, reduces fusion time of images, and reduces
visual fatigue. At the same time, the overall latency of the over-
all system must be kept to a minimum to minimize sickness
and maximize immersion. and observed their accuracy when
compared to a reference image as well as their computation
time. I compared three different depth of field algorithms based
on 2 different distance metrics to a reference image as well
as the per pixel computation time. An interesting future work
could investigate which of the artifacts created via image space
methods has the largest impact on our visual system. Perhaps

certain artifacts are insignificant in our perception of depth or
in fusing images, and can be allowed to appear in the result
resulting in a less complex and, perhaps, faster algorithm.
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