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Abstract

In this work, a technique for rendering stereoscopic 360°
images from a pair of spherical images, for virtual reality
applications, is presented. The spherical images are captured
using a Ricoh Theteﬂ camera from two viewpoints separated
by a known, vertical displacement. Using vertical, rather
than horizontal, camera displacement allows the computation
of depth information in all viewing directions, except zenith
and nadir, which is crucial for rendering an omnidirectional
stereo view. Stereo correspondence information from a three-
dimensional similarity accumulator is combined with the
RGB information in the captured images to produce dense,
noise-free disparity maps that preserve edge information.
From cleaned disparity maps, depth information is calculated
from disparity and pixels are remapped to a new viewpoint in
which artifacts are filled before display on a Samsung Gear
VR [ﬂ Using our method high quality stereo images can be
rendered with a reasonably good perceived depth.

1 Introduction

Depth-based stereoscopic image rendering and 3D
reconstruction has been an important area of research in
multimedia, broadcasting and in computer vision. The
area has received a lot of attention from the broadcast
research community for its applications in 3D television
(TV) [1]I, [2]. Whereas the classical approach to 3D TV
requires the transmission of two video streams, the depth-
based approach can achieve the result using only one video
stream and one stream of depth maps, thus rendering 3D
content using a smaller bandwidth [3]], [4]. Similarly,
depth-based 3D perception is an important pre-requisite for
applications in computer vision and virtual and augmented
reality [5]], [6]], [7]-

The remainder of this report is structured as follows.
Section 2 gives an overview of the equipment used for the
project and its setup. Section 3 talks about the algorithms
used for pixel-level, raw disparity computation and the
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various post-processing techniques used to generate the final
disparity map. Section 4 gives a brief geometric description
of stereo view generation algorithm and then moves on
to talk about the technique used for inpainting the newly
exposed areas due to disocclusion. Section 5 displays images
at various stages in the processing pipeline and comments
on the quality of the produced results. Section 6 outlines
possible improvements to the work done in this project and
the directions in which the work discussed in this report can
be extended in future.

2 Equipment Setup and Preprocessing

2.1 Equipment Setup

Pairs of images used for disparity calculation and stereo view
manipulation were captured with a Ricoh Theta camera. The
Ricoh Theta has two opposite-facing 185° fish-eye lenses and
sensors. This captures a 360° by 180° image of a scene when
the two images are stitched together by the Theta software
into an equirectangular image at a resolution of 1792 by
3584 pixels.

Capturing each scene requires recording two of these
images from viewpoints displaced vertically by a known
distance. The displacement must be sufficient to cause
objects at selected depths to move one pixel or more, but
large shifts can be problematic because objects are distorted
as they move, and smaller pixel shifts can be calculated
faster. Once processing is performed in MATLAB El, the
final stereo views are loaded onto the Samsung Gear VR, a
virtual reality headset which houses a Samsung Galaxy S6 as
a display. The device keeps track of the direction its wearer is
facing and displays the correct image to create an immersive
stereoscopic 360° experience.

2.2 Preprocessing

The image captured using the setup described above need to
be aligned to account for possible horizontal translation and
rotation of one viewpoint with respect to the other. Since

3http://www.mathworks.com/products/matlab/
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Figure 1: Image pairs are captured with the Ricoh Theta on a
tripod, processed in Matlab, and displayed on a Samsung
Gear VR Headset.

the camera is mounted on a tripod, which is leveled using a
leveling bubble on the tripod head, any undesired rotation and
horizontal translation is going to be very small in magnitude
(compared to the size of the image).

The images could therefore be aligned by holding one
image constant and cyclically shifting the other image, one
pixel column at a time, until maximum correlation was
achieved between the two images. It was found that the
horizontal shift between images in around 10-20 pixels
(when the horizontal image dimension is 3584 pixels), which
corresponds to a rotation of roughly 1-2°.

3 Disparity Computation

3.1 [Initial Disparity Estimation

The first step in our process is to generate a disparity map
from our two vertically shifted 360° images. The disparity
map corresponds to the pixel-level shifts between the two
images captured, which will then be used with our measured
camera shift to calculate the depth map. We initially tried
implementing a variety of techniques offered by different
papers [8], [9]. However, the method that worked best with
our setup was a slightly modified version of the similarity
accumulator technique [[10]]. For this technique, the paper
assumes that the disparity is only along a single direction
(vertical in our case), and builds a three-dimensional
similarity accumulator based on image shifts in that
direction. The three-dimensional accumulator is essentially
a stack of images, where each “layer” in the stack is the
original image with a shifted second image subtracted from it.

First, we establish a range of disparities that are possible
d = [0,d,,]. For each value of d = d;, we shift the upper
image vertically by d; and store the absolute difference
between the shifted image with the lower image. Each
difference image gets stored along the third dimension,
resulting in an accumulator that is 1792x3584xdm + 1.

The paper then proposes that the initial disparity D can

then be calculated with the accumulator a with:

a(u,v,d) e

That is, essentially, for each pixel in the difference image,
find the smallest value along the third-dimension of the
accumulator and that corresponding image shift will be the
disparity value at that pixel.

D(u,v) = argmin 4

min,dmax]

We discovered that while this technique was must faster
than the typical block-matching algorithm, it is also much
noisier due to its pixel-by-pixel search. Even with the
modified mean filter proposed by the paper to address this
problem, we decided to use a 6x6 window search through the
accumulator instead of a 1x1. For each pixel, we look at the
6x6 window surrounding that pixel and find the disparity that
gives the minimum euclidean norm of that window. Finally,
the paper suggests heavy median filtering and morphological
closing in order to smooth out some other noise. Some of the
results from this initial disparity estimation are shown in[2}

Figure 2: The top image is the lower image taken by the
ricoh theta. The bottom image is the initial disparity
estimation. Brighter pixels correspond to greater disparity
and therefore closer image

3.2 Post-Processing

As we can see, the algorithm described above provides a
good first-pass disparity estimation. However, there is still
a lot of processing that needs to be done in order to improve
our disparity map. First of all, there is a lot of noise along
the floor and walls of the images. Generally, it is fairly
difficult for algorithms to calculate disparity for regions with
low texture, and as a result, we get a lot of noise. Looking at
the accumulator we had generated, we discovered that these
pixels corresponding to these areas of low texture had very



low variance across the disparity axis in the accumulator. We
therefore made a search through each pixel in the accumulator
and zeroed out all disparities corresponding to low variance
across the third-dimension of the accumulator. This removed
a lot of the noise in the image shown 3]

Figure 3: The disparity map with the noisy regions zeroed
out. The disparity map now appears a lot cleaner

Median filtering and morphological closing earlier removed
some of the smaller holes in the image, but there are still
large undefined regions due to the noise removal. We
performed region labeling for all of the undefined regions of
the disparity map and classified them according to their size.
For smaller regions, we simply filled them in by averaging
the pixel values along their borders. This was accomplished
by performing morphological edge detection on each of the
undefined regions to get an outer edge, and then averaging
over the disparity values corresponding to that border. This
method works because most of the small holes are generally
from the un-textured regions of a single object. Therefore by
averaging over the border disparity values, we generally get
objects with consistent disparity values.

For larger regions, we followed the method outlined
in [[10] by looking along the scan lines and only using
disparity values directly above and below the undefined
region to fill in the holes. To implement this, we essentially
broke each region into separate columns and filled in each
group of columns with the median of the bordering disparity
values. Finally, we used a large horizontal blurring filter in
order to smooth out the sharp edges and filled in the large
holes with the result. The resulting images are shown 4]

Figure 4: The resulting disparity map with the undefined
regions filled in.

Overall, our disparity maps give a good estimate of the image
shift. In many of the images shown above, we can see a
gradient of the pixels gradually getting darker as the objects
get further away. We can also distinguish separate objects
fairly well and see disparity discontinuities between close and
far objects. The main problem with this disparity map is that
it is still somewhat noisy. Also, edges are not clearly defined
due to our closing filter to fill in holes. As a result, we needed
further processing in order to improve this map.

3.3 Disparity Averaging based on Image Seg-
mentation

The disparity map generated thus far, still has a considerable
pixel-level noise rendering it unusable for any meaningful
stereo application. Most simple low pass filtering operations
fail to preserve sharp edges and discontinuities in the
disparity. Hence, segmentation-based averaging was used to
smooth the generated disparity map.

In this novel technique, the image is first segmented
using RGB data in the image using a modified version of
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). The advantage of this technique is that it can
form arbitrarily shaped, connected segments based on the
color information. An image is split into several thousand
such segments and disparity values are averaged over each
segment. Since the segmentation is based on the image color,
edge information is preserved very well. Similarly, having
a large number of segments ensures that each object in the
image is comprised of several segments, which helps in
preserving disparity gradients across objects.

At the end of this step, the disparity map is noise-free
and still preserves the edge information very well. This is
the final version of the disparity map, which will be used
further, for rendering stereo views. Below are sample results
from this stage. It can be seen that even though all the
pixel-level noise is removed, the disparity gradient across the
bed is still preserved and sharp discontinuities in disparity are
maintained.

4 Stereo View Rendering

Before new views can be rendered, simple processing must
be done to the disparity to convert it to distance, and smooth
it slightly. Knowing camera displacement between the
captured images allows the conversion of disparity values to
accurate distances from the camera. Once distance values
are calculated, the RGBD equirectangular image contains
information for every pixel on both color and spatial position
in spherical coordinates.



Figure 5: The top image is the room segmented by color. The
bottom image is the resulting disparity map after averaging
the segmented sections.

4.1 Viewpoint Geometries

In order to produce a stereoscopic scene, image
transformations based on depth information must be
performed. These transformations can be of two types,
realistic transformations, and pseudo transformations. The
goal of both is to produce pairs of images which appear
3D, but a realistic transformation is incompatible with
a display device such as an Oculus or Samsung Gear VR,
which only accepts two equirectangular images per 360 scene.

In a realistic environment, the parallax shift of objects
is a function of angular position, horizontally. There is no
parallax effect, for example, at 90 degrees from the direction
a person is facing. If an image like this was put into an
Oculus device, it could not be immersive because a 90 degree
head turn would face the user toward a region of no parallax,
while he would have maximum parallax in peripheral vision.
This project implemented this realistic 3D view generation,
but a different geometry was used to generate display views
for the Oculus device.

Because the VR headset only displays one 360 image
for each eye, the movement of every object, regardless of
horizontal position, is calculated as if the object was in the
center of the visual field. This approximation still produces
quality 3D views because object shifts always appear correct
in the center of the subjects visual field, and as visual acuity
falls off away from the center, it is harder to tell that offsets
are not realistically rendered.

4.2 Inpainting

Because producing stereoscopic views is a depth-based
remapping of all pixel values, it is likely that some areas in
the generated view will be empty. These image gaps need
to be filled to make the image acceptable. There are many
ways to fill these holes in the image, but because the goal
is to make the image look realistic and to preserve sharp
edges on shifted foreground objects, this project used a
depth-sensitive content mirroring operation to add content
to holes. This method is relatively simple compared to
some content generation inpainting techniques, but works
sufficiently well to avoid noticeable image artifacts in
standard (non-translated) stereoscopic rendering [I1]]. Unlike
most inpainting tasks, however, we have knowledge of depth,
and want to preserve discontinuity on one side of the hole
where the boundary of an object is.

To fill holes, the image is scanned line by line. When
the beginning of a hole is encountered, its length on the line
is calculated, and the depths of the pixels bounding the hole
are compared. To preserve the discontinuity at the close
end of the hole and blend with the further end, information
from the deeper side is mirrored into the hole. This process
is performed line-by-line for the entire image, and is then
performed column-by-column in a similar manner so that
holes are filled with an average of mirrored information from
their deeper vertical and horizontal edges.

This process works well when holes are small, however,
creating large holes can be problematic because it becomes
obvious that information has been copied. Stereoscopic
views usually contain holes which are not noticeable when
filled, but translated views are more distorted and contain
more holes which are harder to discretely fill.

4.3 Translated Views

Though generating stereo images involves translated view-
points, this project also produced stereoscopic views whose
central position was different from the camera position. Ren-
dering a translated view, as if the stereo views were generated
from a translated camera, is slightly more difficult than a
simple stereoscpoic view. Before performing stereoscopic
view generation, all pixel positions are calculated in cartesian
coordinates so that they can be modified according to the new
imaginary camera position, and then are transformed back
to spherical coordinates where the pseudo view generation is
simpler, and remapping is more straightforward. When gen-
erating true (realistic) stereoscopic views, all pixel location
changes are done in cartesian coordinates because the entire
remapping can be done in one step.



5 Results

Figure 7: Images from top to bottom: original lower image,
segmented disparity map, depth map, left view, and right
view.

Figure 6: Images from top to bottom: original lower image,
segmented disparity map, depth map, left view, and right
view.



Figure 8: Images from top to bottom: original lower image,
segmented disparity map, depth map, left view, and right
view.

The stereo images rendered using our method are of good
quality and contain minimal inpainting and disparity artifacts.
The images also produce a reasonably good perceived depth.
The image produced do have some geometric distortions. A

possible cause for this could be the high geometric distortion
introduced by the fish-eye lenses in Ricoh Theta, which has
not been compensated for, in this project. It is expected that
running camera calibration and lens undistortion algorithms
prior to using our method will produce better results.

Another challenge is that since our camera displacement is
vertical, it is hard to estimate depth information of vertical
objects such as pillars, that have no texture along the vertical
direction. Similarly, by the virtue of the equipment setup,
there cannot be any disparity information along the baseline
i.e. towards zenith and nadir. This is, however, generally not
an issue, since most human observers looking at an image
tend to focus on image regions within a band around the
equator, and two-image 360° VR views are not capable of
displaying depth at angles near the poles.

6 Future Work

While this project successfully demonstrated a capture-to-
display stereoscopic 360° system, there is a great deal of
improvement which can still be done. The current system
uses one camera which is moved between photos, but
attaching two Ricoh Theta cameras and triggering them
together would allow for live scene capture with compact
hardware, a more elegant solution than current concepts
which rely on large assemblies of many cameras.

Processing is likely the area in which the greatest amount of
improvement could be made. Disparity calculations may be
improved by taking into account camera distortion during
matching, better filtering could reduce artifacts in disparity
with less distortion, and improved inpainting methods
would make larger translations from the camera position
possible. Processing speed is also an area in which significant
improvement is necessary.

Another possible extension is to add the effect of live
modification of view with translation by pre-computing a
stack of images and pulling the right image into the display
based on the VR translation output, or posiibly computing
on-the-fly, should such a processing speed be achieved.

Improvements in the processing would open up a large
number of possibilities in entertainment, such as stereoscopic
360° video in which the viewer is able to look around and
make small head movements.
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