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 Abstract – The hovering capabilities of hummingbirds have 

been studied in literature, and sometimes, image analysis is 

used to extract important features. Studies using image 

analysis techniques primarily used multiple cameras whereas 

here, we wish to conduct image analysis using video from a 

single camera so that two dimensional kinematics calculations 

could later be conducted. The benefit of this approach is that 

a complex, calibrated setup is not necessary and high speed 

videos of hummingbirds that have already been taken with a 

single camera can still be analyzed. The process used in this 

study combines multiple different image processing 

techniques and the end result is multifaceted and includes 

segmentation, point tracking, and flapping frequency 

calculation.  
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I. INTRODUCTION 

Hummingbirds are well equipped for hovering flight, and past 

studies of this behavior have used image analysis to analyze the 

kinematics of their flapping motion [1], [2]. These studies 

however, had the benefit of using multiple cameras to pinpoint 

motion. In this study, video taken with a single camera view is 

analyzed in order to accomplish multiple tasks including image 

segmentation, point tracking, wing-beat frequency detection, 

background movement identification, and angle measurement. 

Past studies involving segmentation have used techniques 

such as normalized cuts [3] and mean shift [4] for image 

segmentation. These methods however, require some finite image 

intensity variation across the regions of interest. Because some of 

the videos of interest are backlit, the entire surface of the bird is 

mostly uniform and these methods would not succeed for our 

purposes. For the same reasons, point tracking techniques [5] 

would be limited. 

Based on the limited information available due to potentially 

poor lighting conditions, along with the increased information 

available from knowing the subject matter of the video, a 

customized approach is constructed. 

II. IMAGE PROCESSING ALGORITHM 

Processing of the hummingbird analyzed here involved 

multiple dependent steps and while the processes used could be 

applied to other birds and situations, the algorithm was optimized 

for hovering hummingbirds. Further dialogue on future steps to 

increase the robustness and flexibility of this algorithm is in the 

Discussion section. 

A. Background Movement 

To begin, the video was converted to grayscale (figure 1A) 

after which Otsu’s method [6] was applied to calculate an 

appropriate threshold for converting to a black and white image. 

A second threshold was also used to generate separate black and 

white images to help separate the wings, which are slightly 

transparent, from the body. This threshold was a fraction of the 

threshold determined through Otsu’s method. This assumes that 

the background is brighter than the bird and works best when the 

bird is backlit. For certain videos, higher quality is attained if the 

grayscale image is a color-channel filtered version of the color 

image. For example, if a front-lit red bird is set against a blue sky, 

a blue filter would give the largest contrast for the grayscale 

image. 

To find the bird mask in the resulting black and white image, 

blob detection [7] is used to find the largest area blob which is 

assumed to be the bird (figure 1B). All other blobs above a 

threshold area are assumed to be the background (figure 1C). A 

world origin invariant to camera movement is established by using 

a sliding window technique [8]. An arbitrary point is defined as 

the world origin on the first image and subsequent images’ 

backgrounds are compared against the first background to 

calculate the world origin in each frame. Moving forward, the 

background is ignored and the two black and white thresholded 

bird mask images are solely used unless otherwise stated. 

 

Figure 1: Creation of binary image masks using Otsu’s method. (A) 

Original grayscale image. (B) Bird mask (C) Background mask 

B. Tail Detection 

To identify the main portion of the body, a couple consecutive 

frame masks before and after the frame of interest were multiplied 

together. Assuming the wing movement was much faster than the 

body movement, this eliminated the wings from the image. For a 

first approximation of tail position, the vertical center point was 

found starting at the leftmost portion of the bird which was 

assumed to be the location of the tail. After a specified number of 

center points were computed, the approximate tail angle was 

computed through linear regression (figure 2A). 

To increase the accuracy and to fully define the tail, the second 

black and white thresholded image was used to search for the 

center of the tail perpendicular to the linear regression. This 



second thresholded image was used as it came close to eliminating 

the wings due to transparency. Center points were computed along 

this linear regression until a threshold area for the tail was reached 

at which point the region of the tail was fully defined. A second 

linear regression was fit to these new center points to accurately 

define the tail angle (figure 2B). 

 

Figure 2: Tail position & angle. (A) First iteration with red dots showing 

the vertical centerline of the small bird body mask. The green linear 

regression is used in (B) where red dots show the centerline of the tail 

along the axis perpendicular to this linear regression. A new green linear 

regression is used to compute tail angle. Note the light gray tail pixels 

which are taken from the low Otsu thresholded bird image. The tail area 

is filled up to a threshold area. 

C. Wing Detection 

By subtracting the small bird body mask from the bird mask, 

the approximate wing shape could be found (figure 3A). Most of 

the time, the two largest blobs were the left and right wings but 

sometimes, the two wings overlapped and needed to be separated. 

To determine when this procedure was needed, a histogram of the 

perimeter of the largest detected blob was created and Otsu’s 

method was used to set a threshold perimeter above which 

separation was necessary (figure 3B). Perimeter was used because 

when the two wing blobs touch, their perimeter almost doubles. 

To separate the wings, the wing blob was dilated [9] and the 

overlapping portion of this image with the body image was fit to a 

linear regression (figure 3C). This line was moved away from the 

body until there was a gap above a threshold length separating this 

line into two portions on the left and right wing. The center of the 

gap was determined and the center of the gap a little further away 

from the body was also found. These two gap-center points were 

used to draw a line that separates the wing blob into two separate 

wings (figure 3D). 

After each wing was found, the centroid and tip position were 

computed. The tip position was found by finding the furthest pixel 

away from the approximate body centroid. This data was then fit 

to circles which identified the center of rotation of the wings 

(figure 3E). This point was used to determine the angle of the 

wings. 

D. Beak Detection 

From the small body mask, a first approximation of the beak 

region was found assuming the beak was at the right side of the 

image. The horizontal position of the end of the beak was 

determined as the last column having above a threshold thickness. 

This beak was then dilated and multiplied by the original bird 

mask (figure 4A). 

 

Figure 3: Wing detection, separation, and angle computation. (A) The 

small bird body mask subtracted from the bird mask to find the wings 

through blob detection. (B) A histogram of the perimeter of the largest 

wing blob for all video frames. Otsu’s method was used to find a threshold 

above which the wing blob needed to be separated into two separate 

wings. (C) The gray region represents the intersection of the dilated wing 

blob and the bird body. The yellow crosses are used in (D) to separate the 

wings. (E) The centroid and tip of the wings fit to circles to find the center 

of rotation at the green cross. The red data correspond to the right wing, 

the blue data to the left wing, the dots to the centroids, and the squares to 

the wing tips. 

For more accurate beak detection, the sub-pixel center of the 

beak was found by first taking the Laplacian of Gaussian (LoG) 

[10] of the grayscale image (figure 4B). Starting at the leftmost 

beak point, the maximum LoG pixel in that column a couple pixels 

above and below the approximate beak center position was 

identified. This pixel and the pixel above and beneath it were fit to 

a quadratic regression and the maximum vertical position was 

computed. If the approximate beak mask ended as the algorithm 

progressed to the right, the next column search region was set as 

the previous center beak position. Once the curvature of the 

quadratic fell below a threshold value, the beak was deemed to 

have ended. The angle of the beak was determined as the linear 

regression of these beak center points. 

For each beak center, the region above and below were 

checked to ensure isolation from the wings and background. If this 

was not the case, that center point was deleted. A threshold width 

of the beak was required to compute the beak angle. If this was not 



satisfied, the beak angle was computed as a linear interpolation 

between surrounding beak angles. 

 

Figure 4: Beak detection. (A) First approximation of beak shown in 

gray. (B) Laplacian of Gaussian used to find the center of the beak 

displayed as red dots. A linear regression was fit to these dots to compute 

the beak angle. 

E. Body Center Calculation 

The center of the body was calculated using data from the top 

of the head for a more robust and less noisy signal. The averaged 

vector from the centroid of the body to the top of the head was 

computed so that the centroid of the body could be computed using 

time resolved head data rather than noisy time resolved body 

centroid data. 

In order to compute the position of the top of the head, a Canny 

edge detector [11] was first applied to the grayscale image (figure 

5A). This edge mask was multiplied by the dilated bird body mask 

to get all the edges on the bird body. From this, the edge with the 

maximum vertical position was identified along with edges within 

a threshold vertical distance away as displayed in green (figure 

5B). All adjacent pixels with identical vertical positions were 

eliminated for consistent regression results. Additionally, if the 

wing was determined to be near to a pixel, it was eliminated. The 

minimum vertical position on either side of the top of the head was 

then forced to be identical by eliminating any pixels that made the 

regression lopsided. Finally, a quadratic regression was computed 

in order to find the sub-pixel position of the top of the head. This 

value was interpolated using surrounding data if there were not 

sufficient data points left for the regression. 

 

Figure 5: Head center calculation. (A) Edge detection of the grayscale 

image using a Canny edge detector. (B) Intersection of the Edge detector 

and the dilated body image as well as the wing displayed in gray. The 

green line is a quadratic regression fit to the top of the head with the red 

cross labeling the top point. 

III. RESULTS 

To visualize the results of this analysis, the original grayscale 

images (figure 6A) were overlaid with the color-coded segmented 

regions, angles, center-lines, points of interest that were computed 

using the algorithm described (figure 6B). Based purely on visual 

feedback, it can be seen that the algorithm performs quite well and 

it never completely mislabels a body part in the 300 frame 

sequence that was analyzed. The primary errors that are observed 

involve interactions with the wing and the bird body. This can be 

seen in frame 2 of figure 6B as part of the bird body is identified 

as the left wing. 

Some sample data taken from this video was also plotted in 

figure 7. The tail angle (figure 7A), body center (figure 7B), and 

beak angle (figure 7D) raw data are all fit with zero phase-shift 4th 

order Butterworth filters and it can be seen that the data is 

relatively smooth and periodic. The same is true for the left and 

right wing angles (figure 7B) which were fit with sinusoids. While 

one might observe that the body center data and the beak angle 

data are noisy, this can be explained by the low magnitude 

variation and fact that noise is amplified in the calculation of 

angles. While the accuracy of the data has not been quantified, the 

visual cues from figure 6B and the consistency of the data indicate 

that this method is robust for the first video tested. 

Another similar, but new video was also tested (figure 6C, 6D) 

using the automated algorithm. This bird had more front lighting 

and because of this, did not perform as well. While filtering the 

colored image with a blue filter improved the performance, there 

were still regions of the bird that were not well resolved. 

 

Figure 6: Segmented image. (A) Original grayscale image 

corresponding to the segmented frames in (B) where the body is shown in 

purple, the body centroid in black, the beak in red, the beak center in 

white, the beak angle in gray, the wings, wing tips, and wing center in 

yellow and blue, the tail in green, the tail center in red, and the offset 

world origin as the white cross. The black number labels show the 

progression of frames where every other frame is displayed. (C) Color 

frame from a different video. (D) Segmented image from this new video. 

 



 

Figure 7: Kinematics data. For all data, the dots are the raw data and the solid lines are the corresponding fitted data. Downstrokes are shaded gray. 

(A) Tail angle. (B) Wing angle for left and right wings shifted to go from -80 to 80 degrees to match the angle Anna’s hummingbird wings travel from 

an overhead view. (C) Bird body centroid with respect to the world origin. (D) Beak angle. 

IV. DISCUSSION 

For the primary video analyzed, the results were quite good as 

verified by visually observing the segmented bird images and by 

plotting data of key features. Beyond this specific video, while the 

algorithms still functioned and identified many parts of the bird 

correctly, there were more errors. Additionally, there are other 

types of bird videos that the software is currently incapable of 

tracking. 

This software primarily relies on obtaining a noise-free and 

accurate black and white image of the bird. For a backlit bird, 

Otsu’s method works well to create this binary image, but a more 

robust bird recognition algorithm would need to be used if the bird 

was front lit. This could also be extended to detecting the bird 

given a complex background rather than the current blank sky. 

While these steps have not been attempted, they would be easy 

amendments to the beginning steps of this software that would not 

disturb the rest of the processes. 

Additionally, while this software was specifically designed to 

track hovering hummingbird, the concepts used could be applied 

to a vast array of bird tracking videos. The major issue to resolve 

would involve the speed of the bird. One way to approach this 

problem would be to first find the average position of the entire 

bird mask as a function of time and move the bird masks to overlap 

each other when comparing consecutive image to obtain the small 

bird image without the wings. This method could be challenging 

if the speed of the bird’s wings is slow compared with the 

movement of other body parts. To solve this issue, an iterative 

process could be used where after detecting the body position, the 

movement in each frame could be recomputed and the process 

restarted. This method would again allow for use of this software 

as only small changes at the beginning steps would be necessary. 

This software was designed to track features on hovering 

hummingbirds and it accomplished this task well. The data 

obtained could be used for a two dimensional kinematics analysis 

and future modifications to improve its robustness & broaden its 

scope could be easily amended onto the current software. 
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