Dynamic Lip-Flip Application

Trisha Lian
School of Electrical Engineering
Stanford University
Email: tlain@stanford.edu

Abstract—With the growing popularity of video calling, there
comes an opportunity to develop fun special effects to use on
chatting platforms. Our goal for this project was to create ”’Lip-
Flip”, a real-time app that swaps the mouths of two users
sitting in front of two webcams. Realism is achieved by having
inserted mouths dynamically match the movement and scale of
each face. First, we apply color and brightness calibration in
order to reduce any differences between the two webcams. Next,
we detect the mouth locations using the Viola-Jones algorithm
and OpenCV-supplied Haar cascades. Lastly, we use Laplacian
pyramid blending to realistically insert new lips onto a user’s
face. Because the app runs in real-time, the final effect created
by ”Lip-Flip” is amusing and entertaining for all-types of users.

I. INTRODUCTION

The inspiration for this application comes from a sketch
segment performed on Jimmy Fallon’s The Tonight Show. In
this segment, two separate cameras are directed at the faces
of the host and his guest, and the lip region of each frame
is swapped to the opposing camera. This creates an amusing
affect where one user’s mouth movements appear on the other
user’s face. However, the methods employed by the show are
very rudimentary: the swapped portion of each camera is a
fixed area, and both participants must keep their mouths cen-
tered on this region. Any small head movements immediately
misaligns the lips. In addition, the minimal blending performed
on the show is masked by the consistent, professional lighting
used by the film crew. This is rarely feasible for standard users
who might want to try “Lip-Flip.”

The goal of this project was to create an entertaining,
real-time, application which realistically swaps the mouths
of two users using two webcams. We dynamically detected
the location of each user’s mouths and had the swapped lips
follow the movement of the face. We also accounted for
differences in image appearance between the two webcams,
which would likely be the case when two users are using
different computers. Like the sketch on The Tonight Show,
we applied realistic blending so that each mouth was placed
on the corresponding face in a believable manner. Our last,
overarching goal was to insure that the application was fast,
robust, and ran in real-time.

This application has the potential to be applied on video
calling applications such as Google Chat or Skype. While
users are talking with their friends, they can turn on “Lip
Flip” and have their mouths swapped in real-time. Much like
Google’s ”Google Effects,” where virtual hats, glasses, and
other accessories are dynamically inserted into a user’s video
stream, our Lip-Flip application has the potential to be an
amusing accessory to video conference software.

Kyle Chiang
School of Electrical Engineering
Stanford University
Email: kchiang @stanford.edu

II. PROCESSING PIPELINE

Our pipeline consists of the following steps. See Figure 1
for a graphical overview. On start-up, we perform a color
and brightness calibration step. Here we find a transform that
reduces the difference in appearance between images captured
on each webcam. This transform is applied to all subsequent
frames. For every frame, we use a Haar cascade face detector
to find a region that contains a face. Next, we apply a nested
mouth detector, focusing only on the bottom half of the face
to locate the mouth. If no mouth is detected, an approximate
region for the mouth is found using the detected face. With
the known location of each mouth, we swap mouth regions
between the two frames. By scaling each inserted mouth
according to the region it is replacing, we account for the size
of each face. Lastly, we apply Laplacian blending on each
frame to blend the mouth onto the face. The processed frames
are displayed on the screen, and the detection process is looped
continuously to allow the application to run in real-time.

A. Camera Color Calibration

The first step in our pipeline is to transform our webcam
images to have similar brightness and color. This is necessary
because each user may have different webcams with different
settings (e.g. auto-exposure, color balancing). If the differences
between the two frames obtained from the webcams are not
handled, the swapped lips will be particularly noticeable. Each
lip segment will have a different appearance, even when the
two subjects have the same skin color. An example of the
differences between two webcams is shown in Figure 2.

(b)

Fig. 2. Images from (a) Camera 1 and (b) Camera 2 may not have the same
color or brightness

Our application accounts for this difference in the following
manner. At the start of each session, a calibration step is
performed. This calibration must be repeated with every new
session, since the environment may change between different
uses of the application. During calibration, the application
takes two frames, one from each webcam. Next, it finds SURF
keypoints in each image and calculates the closest matching
keypoints. This step is sped up by using FLANN (Fast Library

Raw Webcam
Images

Color Balancing /
Gain Consistency

Find
Faces

Blend
Images

Find Mouth
Within Faces

Swap Mouth
Regions

Fig. 1. Data Pipeline

for Approximate Nearest Neighbors) with OpenCV. Once
matching keypoints are found, we estimate a homography
using RANSAC, and keep only the inliers that fit this homog-
raphy. This helps improve the validity of our matched pairs.

The inliers’ coordinates give us a set of 2D image points
that correspond to the same 3D world point. Ideally, we
want the RGB values of these corresponding points to match
between the two webcam images, so that the two frames look
as similar as possible. Using these values, we find the best
least-squares 4 x 4 transformation matrix that takes us from one
set of values to the other. The inspiration for this calibration
step came from [1].

Rii Gip Big 1 Ry1 G2y B2p 1
Rip Gip Bip 1 [4x4] = Roo Gap Bap 1

This calibration step is prone to finding poor transforms.
First of all, not all correspondences found are always accurate.
Secondly, the SURF keypoints tend to find dark regions that
are not helpful for color calibration. Lastly, we occasionally
do not find enough keypoints to solve for our unknowns. To
mitigate these errors, we add a user-input step to verify the cal-
ibration. Upon start-up, the calibration continuously searches
for matching keypoints until it finds enough to determine
the best transform. When found, it applies the transform to
the frame in question, and displays it for the user to see.
If the transformed webcam image is significantly similar to
the webcam we wish to match it with, the user will enter
”yes” and the Lip-Flip session will start. If not, the program
will continue looking for matching keypoints until it finds a
transform that the user deems accurate. During calibration, the
two webcams must have similar image views in order to ensure
enough correspondences are found.

Once a single good transform is found, it is applied
throughout the current Lip-Flip session. Every frame received
from one webcam is transformed, according to the above
equation, into a new frame that approximately matches the
second webcam in terms of color, gain, and brightness. The
results of one such transformation is shown in Figure 3.

B. Viola-Jones Object Detection

The next step in our pipeline is to detect the mouth
region within each frame. We detect using the ViolaJones
object detection framework [2] as implemented in OpenCV.
Instead of working directly with image intensities, the Viola-
Jones method uses Haar-like features to classify images. The
original paper used features that consisted of two, three, or
four rectangles. The value of a feature is computed by finding
the difference in average pixel intensities between rectangles.
In this manner, a single feature can help identify an object.
For example, the three-rectangle feature shown in Figure 4

=
(©

Fig. 3. Images showing how camera 1 (a) is calibrated to camera 2 (b)
resulting in the transformed image (c)

is useful for detecting faces, due to the difference in pixel
intensities between the eyes and the skin. In order to rapidly
increase the processing speed of this algorithm, an integral
image is used to quickly calculate feature values.

(®)

Fig. 4. (a) Example of a feature used for face detection. (b) Examples of
Haar-like features used in the original Viola-Jones method.

A trained Haar cascade consists of various weak classifiers
that have been arranged into a linear tree-like structure. A weak
classifier is a Haar-like feature that can only correctly identify
a positive training examples more than 51% of the time. The
detection slides a window over an image at various scales and
finds faces according to this cascade. The stages of the cascade
begin with simple classifiers that can efficiently reject most
windows and gradually increase in complexity. Early stages
efficiently reject most window, while further stages ensure a
low false positive rate. The cascade can be thought of as a
linear tree; once a window is rejected by one stage, it is no
longer processed with subsequent stages.

OpenCV provides trained cascades for various facial fea-
tures. In our pipeline, we first use a face cascade to locate
faces in each frame. We filter the detected faces and keep
only the largest one. Next, we apply a mouth detector within

the bottom half of the face region. We use nested cascades
to reduce the false positive detections that appear if one uses
a mouth detector on the entire image. If no mouth is found,
we use the lower third of the face region as the “detected”
mouth. When a mouth region is determined, we expand it to
be slightly larger than the detected region in order to have
more pixels to blend with in our next step. An example of a
detected face and mouth region is shown in Figure 5

Fig. 5.

(a) A detected face and (b) a detected mouth within the face

We insert each mouth region at the location of the mouth
it is replacing. Mouths must be detected in both webcams in
order for the swap to happen. Lastly, we scale each mouth
region to match the width of the opposite mouth region. This
allows the mouth to dynamically scale according to the size
of the face in the image.

C. Laplacian Pyramid Blending

After finding the mouths in the two faces, scaling and
swapping them is a fairly easy task. However, this produces an
unrealistic image with a clear separation between the inserted
mouth and original image. To reduce this problem and improve
realism, we apply a blending algorithm to smooth out the
transition.

For our Lip-Flip application, we decided to use Laplacian
pyramid blending to blend the cropped mouth and the face.
The Laplacian pyramid blending algorithm for two images A
and B over a mask M works as follows:

1) Generate a scale-space representations GA and GB
for images A and B and GM for the mask M. To
prevent aliasing from the subsampling, the image is
Gaussian filtered before subsampling to generate the
scale-space representation. Because the scale-space
representation can be visualized as a “pyramid” of
subsampled images, this is often referred to as a
”Gaussian pyramid”

2) For the Gaussian pyramids GA and GB, generate
Laplacian pyramids LA and LB. This is done by tak-
ing the difference between each scale representation
and the following scale representation and generating
a Laplacian for every scale

3) Combine the two Laplacian pyramids LA and LB
into a combined pyramid LC' by using the values of
GM as weights. For each scale,

LC(i,j) = GM(4,j)LA(i,5)+(1-GM (i, §))LB(i, §)

4) To get the final combined image C' we collapse the
combined Laplacian pyramid LC by upsampling the
image at each scale and adding them together

In our application, we take image A to be an image with a
crude copy-paste of the new mouth scaled and placed over the

destination mouth. Image B is the original image without a
mouth copied over. The mask M was selected to be an ellipse
covering the mouth region. Note that because we wish the
blending to occur over a region around the mouth, the section
of the mouth that is copied over must be slightly larger than
the intended mouth region.

While we considered using a more complex and seamless
blending algorithm (eg. Poisson blending) it could not perform
fast enough for our real time application. The Laplacian
pyramid blending algorithm satisfied this constraint, and as
can be seen in Figure 6, does a very good job at blending the
mouth on top of the original image.

Fig. 6. Comparison of the mouth swap (a) without blending and (b) with
Laplacian pyramid blending

III. RESULTS

Our final application achieved the goals detailed in the be-
ginning of this paper. An example of a frame being processed
step-by-step is shown in Figure 7. The lips were swapped,
dynamically tracked and scaled, and blended in a realistic
manner. We achieved frame rates of around 15 fps for image
sizes of 400x255 on a Macbook Air (13-inch, Early 2014).

IV. FUTURE WORK

Because the Haar-like features are not rotation or perspec-
tive invariant, detection often fails if a user rotates his or her
head or looks away from the camera. Even if the detection
succeeds, the cropped mouth is pasted at a visually awkward
angle compared to the perspective of the face. Exploring
different detection methods that are rotation invariant would
improve the robustness of our app.

Another potential improvement would be to apply a method
to take into account wide-open mouths. Currently, this case
often leads to a failure in the mouth detection, since the
Haar-cascades were not trained on open mouths. One option
would be to train our own cascade, and when detecting
an open mouth, apply some strategic changes to make the
swapped mouths seem more natural. We did attempt to detect
open mouths by sampling and comparing pixel intensities, but
discovered the appearance of beards or shadows made the
detection unreliable.

Another improvement we attempted was to improve blend-
ing for participants with differing skin colors. Currently,
color balancing is performed on the entire image during our
camera calibration step. We attempted to apply the same
color/brightness matching on patches of skin in the swapped
lip regions, but discovered that the differing color of the actual
lips and skin produced unnatural results. These additional color
balancing steps also dropped our frame rate. With different
algorithms, such as fast lip segmentation, it may be possible
to improve the blending between users of different skin tones.

(c) (Y]

(€3] ()

)

Fig. 7. Results from final application. From the raw images (a)(b), faces are
detected (c)(d), mouths are detected (e)(f) and swapped (g)(h), then blended
(1)) for the final lip-flip

V. CONCLUSION

We managed to create a very successful Lip-Flip ap-
plication. Under typical conditions, the application reliably
and efficiently detects the mouths and does a believable job
swapping and blending the mouths. During our live demo, we
received positive feedback on the entertaining and amusing
aspects of our application. It was apparent that Lip-Flip could
be an excellent add-on to a video conferencing program and
provide amusement to users of all ages.

ACKNOWLEDGEMENTS

We would like to thank Professors Bernd Girod and Gordon
Wetzstein as well as the TAs Jean-Baptiste Boin and Huizhong
Chen for doing an excellent job running EE368 and making it
a very enjoyable quarter.

We also want to give thanks to Roland Angst for providing
the inspiration behind this project.

APPENDIX
A. Work Allocation
Trisha Lian - Camera calibration, Haar-cascade detectors

Kyle Chiang - Laplacian blending

REFERENCES

[11 Xu, Ning, and James Crenshaw. “Image color correction via feature
matching and RANSAC.” Consumer Electronics (ICCE), 2014 IEEE
International Conference on. IEEE, 2014.

[2] Viola, Paul, and Michael J. Jones. "Robust real-time face detection.”
International journal of computer vision 57.2 (2004): 137-154.

[3] Adelson, Edward H., et al. "Pyramid methods in image processing.” RCA
engineer 29.6 (1984): 33-41.

