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Abstract— In this paper, we implement a dehazing algorithm 

using dark pixel detection in MatLab and C++/OpenCV. The 

algorithm is originally proposed in Yu et al.’s paper. The 

simplicity and effectiveness of the algorithm make it possible for 

us to run the C++/OpenCV implementation on Android phones 

through android NDK with reasonable speed. 
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I. INTRODUCTION 

In the last couple decades, China has developed its 
economy by largely expanding heavily polluting industries. 
Public concern over the environmental consequences of this 
growth has exploded in recent years. China’s hyperactive 
microblogs logged 2.5 million posts on “smog” in a single 
month in 2013 [1]. Smog filled images of Chinese cities went 
viral online and have come to represent the severe pollution 
problem in China. The generation born after 2000 has probably 
never seen an unpolluted China. In this project, we plan to 
build a mobile haze removal application that lets users see a 
different side of China. By removing the haze and 
reconstructing a clear sky, the application will present an 
image of an unpolluted China. 

The effect of haze on an image is described by the 
following equation: 

 I(x) = R(x) t(x) + A × (1 t(x)) 

I is the viewed image intensity, R is the radiance from light 
reflecting off the viewed object, t is the amount of light 
transmitted through, and A is the atmospheric light. Our goal is 
to recover the haze free image R(x). We chose to solve for R(x) 
by loosely following the methods outlined by Yu et al., which 
uses segmentation and linear fitting to estimate the thickness of 
the haze [2]. Yu et al. method claimed to be at least 10 times 
faster than comparable algorithms, including another algorithm 
we were considering by He et al., and as we intended to 
implement the program on a mobile device with limited 
computing power, speed and efficiency were our main criteria 
for algorithm selection. 

II. IMPLEMENTATION 

We based our implementation on Yu et al.’s paper. The 
paper breaks down the dehazing algorithm into six steps. 

Following those steps, we implemented the algorithm in both 
MatLab and C++ with OpenCV. The steps we took are 
described below. 

A. Original Image 

To be able to compare our results with Yu et al.’s, we 
selected an image they ran their algorithm on. This image is 
shown in Fig. 1(a). The result of each of the algorithm steps 
listed below is shown in Fig.1 under the corresponding letter. 

B. Computing the Dark Map 

The first step is computing the dark map of the image. 
Based on equation (1), we can obtain:  

 t(x) = (A  I(x)) / (A  R(x)) 

If we compute the transmission function on the dark pixels, 
those pixels would appear to reflect little light, and we get 

 t(x) = 1  I(x) / A 

by setting the object radiance to 0. R(x) is closest to 0 in the 
color channel with the smallest value. We can therefore 
estimate t(x)  by 1 – Ic(x) / Ac, where c indicates the minimum 
color channel at x. Since –1 / Ac is a constant after white 
balancing the image with respect to A, – Ic(x)  is the only 
variable and we can use – Ic(x) as a guide for generating the 
transmission map. The image constructed by Ic at each pixel is 
called the dark map. To find the dark map, we simply loop 
through all 3 channels for every pixel and use the minimum 
value to construct a single channel gray value image. 

C. Size-controlled Segmentation Based on the Dark Map 

The second step is segmenting the image into local blocks. 
An assumption made in Yu et al.’s paper states that 
transmission t would not change sharply in a local area with 
continuous depth. Based on this assumption, Yu et al 
performed linear fitting on each block of the dark pixels to 
model the transmission map, which will be discussed in 
Section II part E. As the dark map is an estimation of 
transmission, we performed segmentation on the dark map 
using the variable size segmentation algorithm proposed by 
Felzenszwalb and Huttenlocher [3]. This step is only 
implemented in C++. To achieve proper block size for accurate 
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linear fitting, we used σ = 0.5, k = 150 and min_size = 400. 
After some experiments, we found that a smaller block size 

produces better results. Thus, our implementation tends to have 
more blocks than Yu et al.’s implementation. 

 

 

Fig. 1: Implementation of Yu et al.’s algorithm. (a-g) correspond to steps outlined in the Image Processing section. (h) is the 
result shown in Yu et al.’s paper. 

 

D. White Balancing 

The third step is estimating the constant airlight value A. As 
Yu et al. argue in their paper, the brightest color may not be the 
best estimation of airlight as it may be attributed to noise. 
Instead, Yu et al. finds the block with the brightest average 
color value and calls it the haze-opaque region. The average 
RGB value of the haze-opaque region is then used as the 
airlight value to white balance the image. 

E. Detecting Dark Pixels 

The fourth step is detecting the dark pixels, which will be 
used to achieve linear fitting of the transmission function 
within each block. Before dark pixel detection, we need to 
employ a median filter to denoise the image. Based on Yu et 
al.’s observations, there are two substeps for selecting dark 
pixels. 

1) Channel Transformation: According to Yu et al., if we 

transform I from the RGB space into the YCrCb space, the Cr 

and Cb of dark pixels will be close to 128, with Cr and Cb 

ranging from 16 to 240. In the implementation, we threshold 

the L2 distance of Cr and Cb value to 128 to get the dark pixels. 

 Cr  128)2  Cb  128)2 < θ 

2)  Neighboring Domain: To avoid false positive 

detection, Yu proposes that a dark pixel has a smaller 

luminance than pixels in its neighborhood. By ensuring the 

maximum value in RGB channels of the dark pixel is less than 

the minimum value in the RGB channels of its neighboring 

pixels, we are able to eliminate a large number of falsely 

detected dark pixels. 

F. Fitting the Transmission Map 

The fifth step is constructing the transmission map. We can 
model the transmission function in each block based on the 
transmission values of its dark pixels. To calculate the initial 
transmission values, we can derive the following transmission 
value of dark pixels from equation (1). 



 t(x) = 1  minr,g,b{I(x)  R(x) t(x)} / Ac 

 t(x) ~ 1  minr,g,bI(x) / Ac 

Where minr,g,bI(x) is the minimal color channel of I(x) and 
Ac is the corresponding color channel of vector A. For a block 
containing more than 20 dark pixels, linear fitting is performed 
on t, row and col number of these dark pixels and their 
corresponding transmission values in each block individually. 
We use this t = a × row + b × col + c to model the transmission 
map within each block. If the block has less than 20 pixels, we 
fit the block with the smallest rectangle and use its perimeter 
pixels to fit the transmission model. After we computed a 
transmission map based on these transmission models, we 
employed a guided image filter [4] to improve the accuracy of 
the segmented transmission map. We used fitlm and fitLine 
functions in MatLab and C++/OpenCV implementations 
respectively. 

G. Recovering the Scene Radiance (Dehazed Image) 

The final step is recovering the radiance from I(x). From 
equation (1), we can get the expression of R(x) as a function of 
airlight, A, and transmission function, t(x), as below. 

 R(x) = A  (A  I(x)) / t(x) 

In the case when t(x) is close to zero, R(x) will approach 
infinity. So based on Yu et al.’s approach, we set the largest 
t(x) in the haze-opaque region, t0, as the lower bound of t(x). 
Finally, we have the final radiance function as 

 R(x) = A  (A  I(x)) / max{t(x), t0} 

III. ANDROID IMPLEMENTATION 

After achieving a working MatLab implementation, we 
rewrote the code in C++ with the OpenCV class, and ran our 
program on an Android phone. We were not able to get code 
running on the provided Droid phones, but were able to port it 
onto an Android phone that could download OpenCV 
Manager. 

IV. DISCUSSION 

Our implementation of Yu et al.’s algorithm is able to 
successfully dehaze most images. In Fig. 1, we compare our 

result (g) to that of Yu et al (h). Due to the particularities with 
which we implemented the algorithm, our dehazed image 
suffers from less oversaturation than the result given in the 
paper. We tested our program on various foggy or smog filled 
pictures, and found that in most cases our algorithm 
successfully dehazes the image. However, our implementation 
does not perform well on images that do not segment into 
many pieces and ends up oversaturating the image. 

The performance of the algorithm is quite fast. In MatLab, 
dehazed images are generated nearly instantly. On a mobile 
phone, images are usually dehazed in under 5 seconds. Images 
that do not contain as many dark pixels take longer to run as 
the algorithm iteratively searches until it finds enough dark 
pixels. 

V. CONCLUSION 

We were able to successfully implement an algorithm to 
dehaze images on MatLab and for Android. While following 
the general steps outlined by Yu et al., our specific 
implementation achieved a result that in some cases produces a 
better result, suggesting that the implementation of the 
algorithm can be even further refined. As our implementation 
can be run on both computing and mobile platforms, our 
dehazing program can be easily run and show photographers 
what their pictures would look like in the absence of factors 
like smog or fog. 
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