
Mobile Haze Removal Application

Holly Chiang

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

Email: hchiang1@stanford.edu

Yifan Ge

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

Email: gyifan@stanford.edu

Abstract— In this paper, we implement a dehazing algorithm

using dark pixel detection in MatLab and C++/OpenCV. The

algorithm is originally proposed in Yu et al.’s paper. The

simplicity and effectiveness of the algorithm make it possible for

us to run the C++/OpenCV implementation on Android phones

through android NDK with reasonable speed.

Keywords—dehaze; image processing; mobile application;

computer vision

I. INTRODUCTION

In the last couple decades, China has developed its
economy by largely expanding heavily polluting industries.
Public concern over the environmental consequences of this
growth has exploded in recent years. China’s hyperactive
microblogs logged 2.5 million posts on “smog” in a single
month in 2013 [1]. Smog filled images of Chinese cities went
viral online and have come to represent the severe pollution
problem in China. The generation born after 2000 has probably
never seen an unpolluted China. In this project, we plan to
build a mobile haze removal application that lets users see a
different side of China. By removing the haze and
reconstructing a clear sky, the application will present an
image of an unpolluted China.

The effect of haze on an image is described by the
following equation:

 I(x) = R(x) t(x) + A × (1 t(x)) 

I is the viewed image intensity, R is the radiance from light
reflecting off the viewed object, t is the amount of light
transmitted through, and A is the atmospheric light. Our goal is
to recover the haze free image R(x). We chose to solve for R(x)
by loosely following the methods outlined by Yu et al., which
uses segmentation and linear fitting to estimate the thickness of
the haze [2]. Yu et al. method claimed to be at least 10 times
faster than comparable algorithms, including another algorithm
we were considering by He et al., and as we intended to
implement the program on a mobile device with limited
computing power, speed and efficiency were our main criteria
for algorithm selection.

II. IMPLEMENTATION

We based our implementation on Yu et al.’s paper. The
paper breaks down the dehazing algorithm into six steps.

Following those steps, we implemented the algorithm in both
MatLab and C++ with OpenCV. The steps we took are
described below.

A. Original Image

To be able to compare our results with Yu et al.’s, we
selected an image they ran their algorithm on. This image is
shown in Fig. 1(a). The result of each of the algorithm steps
listed below is shown in Fig.1 under the corresponding letter.

B. Computing the Dark Map

The first step is computing the dark map of the image.
Based on equation (1), we can obtain:

 t(x) = (A  I(x)) / (A  R(x)) 

If we compute the transmission function on the dark pixels,
those pixels would appear to reflect little light, and we get

 t(x) = 1  I(x) / A 

by setting the object radiance to 0. R(x) is closest to 0 in the
color channel with the smallest value. We can therefore
estimate t(x) by 1 – Ic(x) / Ac, where c indicates the minimum
color channel at x. Since –1 / Ac is a constant after white
balancing the image with respect to A, – Ic(x) is the only
variable and we can use – Ic(x) as a guide for generating the
transmission map. The image constructed by Ic at each pixel is
called the dark map. To find the dark map, we simply loop
through all 3 channels for every pixel and use the minimum
value to construct a single channel gray value image.

C. Size-controlled Segmentation Based on the Dark Map

The second step is segmenting the image into local blocks.
An assumption made in Yu et al.’s paper states that
transmission t would not change sharply in a local area with
continuous depth. Based on this assumption, Yu et al
performed linear fitting on each block of the dark pixels to
model the transmission map, which will be discussed in
Section II part E. As the dark map is an estimation of
transmission, we performed segmentation on the dark map
using the variable size segmentation algorithm proposed by
Felzenszwalb and Huttenlocher [3]. This step is only
implemented in C++. To achieve proper block size for accurate

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

linear fitting, we used σ = 0.5, k = 150 and min_size = 400.
After some experiments, we found that a smaller block size

produces better results. Thus, our implementation tends to have
more blocks than Yu et al.’s implementation.

Fig. 1: Implementation of Yu et al.’s algorithm. (a-g) correspond to steps outlined in the Image Processing section. (h) is the
result shown in Yu et al.’s paper.

D. White Balancing

The third step is estimating the constant airlight value A. As
Yu et al. argue in their paper, the brightest color may not be the
best estimation of airlight as it may be attributed to noise.
Instead, Yu et al. finds the block with the brightest average
color value and calls it the haze-opaque region. The average
RGB value of the haze-opaque region is then used as the
airlight value to white balance the image.

E. Detecting Dark Pixels

The fourth step is detecting the dark pixels, which will be
used to achieve linear fitting of the transmission function
within each block. Before dark pixel detection, we need to
employ a median filter to denoise the image. Based on Yu et
al.’s observations, there are two substeps for selecting dark
pixels.

1) Channel Transformation: According to Yu et al., if we

transform I from the RGB space into the YCrCb space, the Cr

and Cb of dark pixels will be close to 128, with Cr and Cb

ranging from 16 to 240. In the implementation, we threshold

the L2 distance of Cr and Cb value to 128 to get the dark pixels.

 Cr  128)2  Cb  128)2 < θ 

2) Neighboring Domain: To avoid false positive

detection, Yu proposes that a dark pixel has a smaller

luminance than pixels in its neighborhood. By ensuring the

maximum value in RGB channels of the dark pixel is less than

the minimum value in the RGB channels of its neighboring

pixels, we are able to eliminate a large number of falsely

detected dark pixels.

F. Fitting the Transmission Map

The fifth step is constructing the transmission map. We can
model the transmission function in each block based on the
transmission values of its dark pixels. To calculate the initial
transmission values, we can derive the following transmission
value of dark pixels from equation (1).

 t(x) = 1  minr,g,b{I(x)  R(x) t(x)} / Ac 

 t(x) ~ 1  minr,g,bI(x) / Ac 

Where minr,g,bI(x) is the minimal color channel of I(x) and
Ac is the corresponding color channel of vector A. For a block
containing more than 20 dark pixels, linear fitting is performed
on t, row and col number of these dark pixels and their
corresponding transmission values in each block individually.
We use this t = a × row + b × col + c to model the transmission
map within each block. If the block has less than 20 pixels, we
fit the block with the smallest rectangle and use its perimeter
pixels to fit the transmission model. After we computed a
transmission map based on these transmission models, we
employed a guided image filter [4] to improve the accuracy of
the segmented transmission map. We used fitlm and fitLine
functions in MatLab and C++/OpenCV implementations
respectively.

G. Recovering the Scene Radiance (Dehazed Image)

The final step is recovering the radiance from I(x). From
equation (1), we can get the expression of R(x) as a function of
airlight, A, and transmission function, t(x), as below.

 R(x) = A  (A  I(x)) / t(x) 

In the case when t(x) is close to zero, R(x) will approach
infinity. So based on Yu et al.’s approach, we set the largest
t(x) in the haze-opaque region, t0, as the lower bound of t(x).
Finally, we have the final radiance function as

 R(x) = A  (A  I(x)) / max{t(x), t0} 

III. ANDROID IMPLEMENTATION

After achieving a working MatLab implementation, we
rewrote the code in C++ with the OpenCV class, and ran our
program on an Android phone. We were not able to get code
running on the provided Droid phones, but were able to port it
onto an Android phone that could download OpenCV
Manager.

IV. DISCUSSION

Our implementation of Yu et al.’s algorithm is able to
successfully dehaze most images. In Fig. 1, we compare our

result (g) to that of Yu et al (h). Due to the particularities with
which we implemented the algorithm, our dehazed image
suffers from less oversaturation than the result given in the
paper. We tested our program on various foggy or smog filled
pictures, and found that in most cases our algorithm
successfully dehazes the image. However, our implementation
does not perform well on images that do not segment into
many pieces and ends up oversaturating the image.

The performance of the algorithm is quite fast. In MatLab,
dehazed images are generated nearly instantly. On a mobile
phone, images are usually dehazed in under 5 seconds. Images
that do not contain as many dark pixels take longer to run as
the algorithm iteratively searches until it finds enough dark
pixels.

V. CONCLUSION

We were able to successfully implement an algorithm to
dehaze images on MatLab and for Android. While following
the general steps outlined by Yu et al., our specific
implementation achieved a result that in some cases produces a
better result, suggesting that the implementation of the
algorithm can be even further refined. As our implementation
can be run on both computing and mobile platforms, our
dehazing program can be easily run and show photographers
what their pictures would look like in the absence of factors
like smog or fog.

ACKNOWLEDGEMENTS

We would like to give special thanks to the teaching staff of
EE 368 for the hard work in this quarter. We would like to
acknowledge Kaiming He for the use of his guided filter
implementation, P. Felzenszwalb and D. Huttenlocher for the
use of the Efficient Graph-Based Image Segmentation
implementation.

REFERENCES

[1] He, K., Sun, J., & Tang, X. (2011). Single image haze removal using
dark channel prior. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(12), 2341-2353.

[2] Yu, Q., Ding, Z., Rong, R., Zhang, Z., & Wang, D. (2011). Dark Pixel
Detection: A Novel Single Image Dehaze Approach. IVCNZ.

[3] Felzenszwalb, P., Huttenlocher, D., Efficient graph-based image
segmentation. International Journal of Computer Vision,59(2), 167-181,
2004.

[4] He, K., Sun, J., Tang, X, Guided image filtering. ECCV, 2010.

