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Abstract— This paper describes an image processing algorithm 

to detect and identify integrated circuits (ICs) on a printed circuit 

board (PCB). The identification algorithm leverages a maximum 

a priori probability (MAP) detector, morphological filtering, 

vertex detection, and SIFT feature extraction to segment ICs in the 

image, correct for rotations, and recognize SIFT descriptors to 

identify ICs. The processing algorithm is implemented and 

evaluated in MATLAB.  
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I. INTRODUCTION 

Competitive analysis is a crucial task in the hardware 
electronics industry that drives both product pricing and 
functionality. Specifically, a list of the components on a printed 
circuit board (PCB), or a Bill of Materials (BoM), can be used 
to directly obtain a reliable cost estimate of the product. 
Compiling a BoM by means of manual analysis can be tedious, 
time consuming, and prone to human error. Instead, modern 
image processing techniques can be used to expediently produce 
a BoM. 

This paper discusses an implementation of an image 
processing algorithm to detect and identify integrated circuits 
(ICs) on a PCB. First, an examination of relevant prior art is 
given. Then, a new architecture to detect and identify ICs is 
proposed, and each stage of the processing pipeline is described 
in detail. A discussion of algorithm selection and associated 
tradeoffs in each stage of the pipeline is also given. Finally, the 
described architecture’s performance is evaluated across a range 
of test images. 

II. PRIOR ART 

Image processing techniques have been applied in the past 
to read labels off of IC packages on an assembly line to check 
for errors [1] and detect IC orientation within the package [2]. 
These applications operated on individual IC packages on an 
assembly line, not fully populated PCBs.  

Prior art also exists on the detection and identification of ICs 
on populated circuit boards [3]. The authors implemented an 
Android-based mobile application to recognize IC part numbers. 
Several modules of their chosen pipeline architecture proved to 
be useful insights that motivated design decisions in the 

implementation described herein, such as the use of a maximum 
a posteriori (MAP) detector as an image segmentation step. 
Using the author’s published code to reproduce their results, we 
found that detection performance dropped when running the 
algorithm over a richer test set - the implementation herein seeks 
to improve upon the robustness of this prior art.  

We seek to advance the science of detecting and identifying 
ICs on populated PCBs, particularly in regards to recognition 
accuracy and robustness to different PCBs and lighting.  

III. ALGORITHM DESCRIPTION 

The following section examines the steps taken by the 
proposed algorithm to identify ICs on a populated PCB using the 
image of a PCB shown in Figure 1 as an illustrative example. 

A. IC Segmentation 

The first objective in the processing pipeline is to segment 
regions in the image that contain pixels corresponding to ICs. 
There are several distinctive features that ICs have in common - 
clean, straight edges, and a black/brown coloration. These 
characteristics immediately lend themselves to several 
approaches that may be effective at segmenting IC regions. 

The first approaches examined were edge detection 
techniques to identify the long, well defined edges of the ICs. 
Several difficulties immediately presented themselves with 
applying edge-based segmentation in a PCB environment. On a 
PCB, there are many well defined edge structures that are similar 
to those on an IC - the edge detector outputs strong responses 
from traces, board edges, and other non-IC devices mounted on 

 
Figure 1. Original image to be processed. 

 



the board. We attempted to remedy this problem by computing 
the eccentricity of the closed edge regions, and rejecting regions 
whose eccentricity is above a chosen threshold (in hopes of 
rejecting long regions corresponding to traces). However, this 
approach was fundamentally limited by the inability to discern 
between short traces and legitimate IC edges, resulting in many 
false positives.  

Due to the challenges associated with applying edge-
detection to images of PCBs, we chose to use a MAP detector to 
segment ICs. The MAP detector exhibited considerably better 
performance on the PCB test images - since ICs on a populated 
PCB have a very distinctive black/brown color compared to the 
background, the detector excelled at identifying IC regions. A 
key factor limiting the performance of the MAP detector across 
a rich test set was the size and diversity of the training set across 
lighting variation, PCB color, and image quality. We overcame 
this difficulty be generating a small but diverse training set to 
that generalized well across a variety of test images. The MAP 
output of the original test image is shown in Figure 2. 

 

B. Segmentation – Post Processing 

While the MAP detector proved effective at roughly 
highlighting regions in the image containing ICs, the MAP 
detector output still contained considerable noise due to false 
positives (produced by other dark regions in the image) and 
holes in legitimate IC regions (due to the white letters in the 
interior of the IC inducing negative results). Additionally, in 
many test images we observed that individual legitimate IC 
regions became disconnected in the MAP output. Without 
additional processing, this would cause the later stages of the 
processing pipeline to detect the presence of multiple regions, 
when in fact there is only one IC. We will now outline the steps 
taken to remediate these concerns.  

First, a dilation with a 2x2 square structuring element is 
performed to connect any erroneously disconnected IC regions 
in the output of the MAP detector. The size of the structuring 
element is critical in this step - a structuring element that is too 
large will result in the erroneous connecting of regions that are 
distinct IC regions, but an element that is too small will fail to 
connect regions that are legitimately contiguous.  

The second processing post-processing step is a closing by a 
8x8 square structuring element. This step eliminates small holes 
that may still exist in IC regions, often caused by the presence 
of the light lettering in the interior of the region. 

Finally, we perform region counting and eliminate regions 
whose size are below a chosen threshold. This effectively 
eliminated noise in the MAP output resulting from false 
positives (dark regions on the PCB resembling the color of an 
IC). The choice of this threshold was chosen experimentally to 
maximize results across the test image set. The final post-
processed segmentation result is shown in Figure 3. 

 

C. Polygon Detection 

An algorithm is needed to identify the vertices of the 
rectangular regions comprising each detected IC to allow 
subsequent processing stages to operate on distinct IC regions. 
There are a number of heuristics that have been proposed in prior 
art to achieve this task [3]. These heuristics involve computing 
the convex hull of each IC region and eliminating supporting 
points on the basis of proximity and adjacency angles. There are 
a few issues applying this approach to the cleaned MAP output 
- given the variability of the MAP output in the presence of 
lighting gradients and shadows, only a single edge or corner of 
an IC may be identified by the MAP detector. Given that the 
detector has still identified a legitimate IC region, it is desirable 
to leverage the detected edge and corner geometries to reliably 
reconstruct the rectangular region that comprises the IC’s 
perimeter - using only the computed convex hull points will 
cause only subsections of the IC region to be identified in many 
instances.  

Eq. (1) presents a heuristic to find the best-fit rectangle 
vertices for the ith detected IC region over the set of region 
rotations 𝜃𝑖. 

argmin
𝜃𝑖

([max
𝑥

(𝐴𝜃𝑖
𝑉𝑖) − min

𝑥
(𝐴𝜃𝑖

𝑉𝑖)] ∗ [max
𝑦

(𝐴𝜃𝑖
𝑉𝑖) − min

𝑦
(𝐴𝜃𝑖

𝑉𝑖)])  (1) 

𝑠 =  {[𝑥 𝑦] | (𝑥, 𝑦)  ∈  𝑅𝑖}, 𝑉𝑖 =  [𝑠1
𝑇 𝑠2

𝑇 … 𝑠𝑛
𝑇]

𝐴𝜃𝑖
=  [

cos 𝜃𝑖 − sin 𝜃𝑖

sin 𝜃𝑖 cos 𝜃𝑖
]

The optimization problem in Eq. (1) can be summarized as 

follows: For each 𝜃𝑖, rotate the detected IC region pixels by 𝜃𝑖, 

and compute the smallest bounding box that fully contains the 

rotated region. We choose 𝜃𝑖,𝑜𝑝𝑡  that gives the smallest 

bounding box area. This gives the tightest fit rectangle over the 

set of region rotations 𝜃𝑖 . This heuristic is repeated for all 

detected regions. The output of this process is shown in Figure 

4. This procedure worked well over our test set. As mentioned 

above, even when the MAP detector output only contained 

 
Figure 2. Output of the MAP detector. 

 

 
Figure 3. Segmentation result after post-processing 

 



single corners of an IC region, this heuristic allows us to 

accurately recover the original IC geometries.  

 

D. IC Identification 

The final step is to identify the part number of the detected 

ICs on the PCB. Initially, optical character recognition (OCR) 

was explored as a technique to parse the text printed on each 

segmented IC. To ensure peak character recognition 

performance, we took several pre-processing steps before 

invoking OCR. First, we rotate the ith region by 𝜃𝑖,𝑜𝑝𝑡  with 

respect to the vertical edge to correct for rotational 

misalignment. Then, a sharpening morphological filter is 

applied to enhance character edge sharpness, followed a 

binarization and region-counting that removes sufficiently 

small noise components. Each pre-processed IC region is then 

fed to the OCR software. The last step is to compute the 

Levenshtein distance between the text output of the OCR 

software and a database containing the names of each IC in the 

test set. We choose the word that minimizes the normalized 

Levenshtein distance (with respect to the length of the query). 

Ultimately, we found that OCR performance was inadequate to 

meet the desired project identification rate goals. The OCR was 

plagued by inadequate character definition due to low-

resolution test images, noise in the binarized images, and 

company logos present in the inscription on each IC. 

A SIFT descriptor matching approach was preferred for IC 

identification versus OCR. In this descriptor matching 

approach, SIFT descriptors are computed over a set of IC 

images that appear in the test set, and are stored into a 

vocabulary tree data structure. For each computed rectangular 

boundary containing an IC, we immediately compute the SIFT 

descriptors (no rotation required here due to rotational 

invariance of SIFT descriptors) and index into the vocabulary 

tree. We choose the IC corresponding to the entry in the 

vocabulary tree that minimizes the histogram distance:  

 

𝜌 =  
∑ min(𝑄𝑖

𝑛
𝑖=1 , 𝐷𝑖)

∑ 𝐷𝑖
𝑛
𝑖=1

              (2) 

     

where 𝐷𝑖  is the histogram of the database entry and 𝑄𝑖  is the 

query histogram. 

     This approach worked well for IC detection, and 

demonstrated resilience against the noise, low-resolution test 

images, and non-textual information that plagued the OCR 

software. Identification rates can be further boosted in the 

future by building the vocabulary tree and testing with higher 

quality images. A depiction of this process is shown in Figure 

5.  

IV. RESULTS 

The results of the algorithm described in section III are 
presented here for four test images. The segmentation column 
refers to the results after polygon detection, but before 
attempting to identify the IC in the database. This result is 
visualized as rectangles drawn on the original image. 
Identification refers to correctly matching a segmented IC to its 
corresponding database entry. This result can be visualized as 
text displayed next to each segmented IC. For each image, three 
metrics are reported. Number Missed refers to the number of ICs 
that were not found during segmentation or a segmented region 
that could not find a match in the database during identification.  
Number Incorrect refers to a segmented region that is not an IC 
or a segmented region that found an incorrect match during 
identification. Finally the overall success rate (SR) is defined as: 

𝑆𝑅𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑖𝑜𝑛 =  
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝐶𝑠

#𝑡𝑜𝑡𝑎𝑙 𝐼𝐶𝑠
 

𝑆𝑅𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐼𝐶𝑠

#𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐼𝐶𝑠
 

for segmentation and identification respectively. Note ‘N/A’ is 
counted as a miss. 

TABLE I.  SUMMARY OF RESULTS 

Image 

Number 

Algorithm Results 

Metric Segmentation  Identification  

1 

(3 ICs) 

Number Missed 0 1 

Number Incorrect 1 0 

Overall Success 0.75 0.67 

2 

(11 ICs) 

Number Missed 1 1 

Number Incorrect 0 5 

Overall Success 0.92 0.27 

3 Number Missed 0 1 

 
Figure 4. Best fit polygonal detection result. 

 
 

Figure 5. Vocabulary tree lookup based on SIFT descriptors. 

 



Image 

Number 

Algorithm Results 

Metric Segmentation  Identification  

(6 ICs) Number Incorrect 0 0 

Overall Success 1.0 0.83 

4 

(5 ICs) 

Number Missed 1 2 

Number Incorrect 0 1 

Overall Success 0.8 0.25 

Total  0.89 0.46 

 

 

 

 

 

 

V. CONCLUSIONS 

This paper has presented an image-based approach for 

detecting ICs on fully populated PCBs. An image-processing 

architecture was proposed that leveraged a MAP detector and 

morphological filtering techniques to segment IC regions, a 

polygon detection heuristic to reconstruct the vertices of ICs, 

and a SIFT descriptor matching technique to identify IC part 

numbers. Design tradeoffs and implementation details at each 

stage of the processing pipeline were examined on the basis of 

application performance. Finally, the paper presented the 

measured results of the proposed image-based IC detection 

approach. Future identification rate performance can be 

achieved by training the algorithm on both higher resolution 

images and a greater diversity of PCBs (across lighting and 

color variations). Similarly, using a higher performance camera 

to capture test images is expected to greatly improve IC 

identification rate performance, specifically during the SIFT 

descriptor matching step. We hope that future work can be 

undertaken to refine and improve this novel approach to the 

detection of ICs on populated PCBs. 
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Figure 6. Test image 1 results 

 

 
Figure 7. Test image 2 results 

 

 
Figure 8. Test image 3 results 

 

 
Figure 9. Test image 4 results 

 



APPENDIX 

 We participated equally in developing the algorithm 

architecture, the MatLab implementation, the poster 

presentation, and the final report.  

 

 

 


