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Abstract 

In this project, we designed an advanced driver 

assistant system with three functions: traffic sign 

recognition, lane deviation detection, and car 

make identification. The traffic sign recognition 

implements Viola and Jones detector to 

accurately detect the traffic sign ahead. Hough 

transforms and edge detection are used in the 

lane deviation detection. For vehicle make 

identification, two models using 2-layer neural 

network and convolutional neural network have 

been constructed. These two models will provide 

high accuracy testing result after training 

processes. 

Keywords: Object Detection, Deep Learning, Edge 

Detection, Hough Transform 

1. Introduction 

Advanced driver assistant systems (ADAS) have 

been implemented in many vehicles to help increase 

both the safety of drivers and pedestrian. The related 

technology is also used to develop self-driving cars. 

Three features including traffic sign recognition, 

lane deviation detection and car make identification 

in ADAS that our team built. Traffic sign 

recognition is crucial to remind the drivers the traffic 

signs ahead in order to prevent accidents caused by 

the traffic sign ignorance in the bad weather 

condition. It can be seen as another eyes to guarantee 

driving safety on the road. Lane deviation detection 

system provides lane detection and stability 

determination, giving drivers warning in the 

condition that car drifting into directions out of lane. 

Car make identification is a useful feature when 

drivers are interested in the make and model of car 

in their front. We will review these three features in 

details in following sections.  

 

 

2. Related Work 

2.1 Traffic Sign Recognition 

D.M. Gavrila [1] implemented template-based 

correlation method to identify potential traffic signs 

in images called distance transforms as detection 

method. Then radial basis function network is used 

for classification. Miguel A Garcia-Garrido et al. [2] 

detected the shape of traffic signs using Hough 

Transform and used several SVM classifier with 

Gaussian kernel and probability estimate output to 

determine about the information on the traffics signs.  

 2.2 Lane Deviation Detection  

Jia He et al. [3] used the Canny detector to find the 

image gradient and then set threshold for edge 

detection. Then they implemented the Hough 

transform as linear model fitting and then set the 

region of interest to achieve lane detection. Anik 

Saha et al. [4] implemented steps including selecting 

RGB image, converting RGB to grayscale, 

extracting feature, subtracting unwanted recognizing 

road and road lane for real-time automated road lane 

detection. Prof. Sachin Sharma et al. [5] used the 

algorithms following steps of Top-Hat Transform, 

Dynamic Threshold, ROI Segmentation, Hough 

Transform, Lane Departure decision. 

2.3 Car Make Identification 

Sparta Cheng et al. [6] implemented steps including 

interest point detection using Scale Invariant Feature 

Transform (SIFT) and Harris corner detection, 

interest point matching using Fast Normal Cross 

Correlation, and inlier extraction using RANSAC.  

3. Algorithm and Implementation 

3.1 Lane Detection 

Lane deviation detection includes the functions of 

lane detection and stability determination. The 

algorithms contain two main parts, the edge 

detection and Hough Transform & Hough peak 

detection. For each frame in the video, first set the 

area in the image for further image processing. Our 

team typically selected the lower area of each picture 

frame in order to get less noise from the background 

part of image. The edge detection algorithm then 
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applies to the region selected. Using the Hough 

transform, the angles of lanes can be found in each 

frame and lanes can be successfully detected. For 

stability determination feature, we match the lane 

markers found in the current video frame with the 

lane markers detected in the previous video frames. 

The algorithm will warn the driver if the vehicle 

moves across the lane marker. The algorithm is 

pretty robust against multiple road conditions. For 

the parameter setting of the algorithm, the number of 

row in the image being process starts from row 800 

since the size of the image is 1080 x 1920. The 

maximum allowable change of lane distance metric 

between two frames is 50 pixels. The minimum 

number of frame a lane must be detected to define a 

valid lane is 10 while the maximum number of 

frame can be missed without marking it invalid is 10. 

By setting those parameters, the algorithms can have 

good performance against different driving 

circumstances. Our work is based on MATLAB 

Computer Vision System Toolbox. Below is the 

result when testing on the real-time driving video.  

 

Figure 1.a: Result 1 in real time video 

Figure 1.b: Result 2 in real time video 

 

 

3.2 Traffic Sign Detection 

We use viola and Jones Detector [7] to detect traffic 

signs. 

3.2.1 Algorithm 

1) Features 

Viola and Jones propose to use Harr-like feature 

extractor to extract features: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = ∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 − ∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 

Then we normalize the features to make it have a 

norm of 1: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑎𝑟𝑒𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
 

According to Viola et al., for a 24 by 24 feature 

window, we can extract approximately 160,000 

dimensions of features. 

 

Figure 2: Harr-like Feature Templates 

2) Classification 

160,000 dimensional feature is a large number. 

Viola et al. assume in the paper that only a small 

fraction of these features are useful and that the main 

problem is how to find useful features for this small 

fraction. Adaboost classifier is a suitable suitable 

choice, because this classifier has feature selection 

capabilities. The principle of Adaboost is to 

construct a strong classifier connected in parallel by 

multiple weak learners. Each weak learner multiplies 

its classification result by weights according to its 

own accuracy. The final output is the sum of all 

classifiers output. The classification accuracy of 

each weak classifier can be very low, but the 

accuracy of the whole strong classifier is very high.  



Traditional adaboost classifier is still too time-

consuming. Viola et al. creatively modified the 

adaboost classifier to a cascade of several adaboost 

classifiers. Each classifier has high true positive rate 

(about 99%), while false positive rate is also high 

(about 50%). However, if we cascade 20 such small 

adaboost classifier, the false positive rate will 

become (50%)20 = 9.5 × 10−7 , while the true 

positive rate remains high. 

3) Optimizing efficiency by computing integral 

image 

Viola et al. propose to use integral image to improve 

computing efficiency.  

𝐼𝑖𝑚𝑔(𝑥, 𝑦) = ∑ 𝑖𝑚𝑔(𝑖, 𝑗)

𝑖≤𝑥,𝑗≤𝑦

 

This can be done within O(mn). Once we have the 

integral image, we can compute one feature within 

constant time. 

𝑠𝑢𝑚(𝑎, 𝑏, 𝑐, 𝑑) = 𝐼𝑖𝑚𝑔(𝑐, 𝑑) + 𝑠𝑢𝑚(𝑎, 𝑏) − 𝑠𝑢𝑚(𝑎, 𝑑) − 𝑠𝑢𝑚(𝑐, 𝑏) 

3.2.2 Implementation Detail and Result 

In our project, we choose three traffic signs to detect: 

stop sign, keep right sign, pedestrian crossing sign. 

LISA Traffic Sign Dataset is selected to train our 

feature detector. For each traffic sign, we use 60~80 

training samples. We cascade 10 adaboost classifier 

for classification. Our code is built upon MATLAB 

vision toolbox. 

 

 

Figure 3: Selected Traffic Signs 

Below are some of our results. Once the feature 

detectors are trained, they can detect our interested 

areas very efficiently. Using this method, we can do 

real-time traffic sign detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Traffic Sign Detection Results 

 

 

3.3 Car Make Identification 

Car make identification based on the behind view 

has been a challenging problem. Since pictures of 

cars are 3 dimensional images, traditional image 

matching method such as SIFT or SURF descriptor 

cannot give accurate results. Besides, the difference 

among different sedan cars are trivial, it’s also 

difficult to achieve accurate results using PCA or 

Fisher LDA. To achieve more accurate results, we 

propose to use deep learning methods. In our project, 

we tried two method. One is a regular 2-layer neural 

networks, and the other one is convolutional neural 

networks. Both give better results compared to 

traditional image matching methods. 

 

Figure 5.a: Original images of Hyundai Sonata 



 

Figure 5.b: SIFT key points overlaid on images 

 

Figure 5.c: Feature correspondences after distance ratio test  

 

Figure 5.d: Feature correspondence after RANSAC  

 

3.3.1 SIFT Descriptor  

For car make identification, we first came up with 

using the SIFT descriptor and SIFT matching with 

RANSAC. The matching results of two images from 

Hyundai Sonata are shown in Figure 5. 

From Figure 5, we observe that only a very few 

points get matched while those points don’t indicate 

the same feature on the vehicle. SIFT matching is 

robust with matching among planes. However, it 

cannot handle 3D image matching.  

3.3.2 Data Collection 

In order to train the models on 2-layer neutral 

network and convolutional neutral network. For each 

vehicle model (Acura ILX, Honda Civic, Hyundai 

Sonata) investigated in this project, 120 photos of 

each car make rear view have been collected. So 

there are totally 360 photos for the entire data set. A 

portion of photos are obtained from google images 

while another portion we collected using photos 

taken on I-101 and I-280. There are some constraints 

on gathering data. One constraint is that there is not 

a comprehensive database for rear view of vehicles 

on the web and the number of vehicle rear view 

picture from google images is limited. Also there are 

time and road condition limitations for our team to 

take rear view pictures from the vehicles on the road. 

Our team chooses these three sedans as the target of 

investigation not only because they are cars 

normally seen on the road but also because they 

have similar appearances and not easy to identify 

even for the human eyes. In the training process, 100 

out of 120 (83.3%) photos from each car make 

randomly chosen from the data set. The test data is 

the remaining 20 out of 120 (16.7%) photos from 

each vehicle make. 

3.3.3 2-layer Neural Networks 

1) Architecture  

 

Figure 6: Architecture of our neural networks 

Our input images are 64 by 64 by 3 RGB images. 

The neural networks we use have two fully 

connected layer. In each FC layer, there are 64 

neurons. Each neuron is has the same dimension as 

the input image. In the output layer, we choose to 

use softmax loss function to output class scores and 

select the class label which has the largest class 

score as our output class label. 

2) Regularization 

To prevent overfitting, we apply L2 regularization to 

our networks. We penalize the squared magnitude of 

all parameters by adding the term  
1

2
𝜆𝜔2 to every 

weight of our networks, where λ is the regularization 

strength. 

3) Results 

Below is the weight of the second FC layer of our 

neural networks. Loss history can be seen from 

Figure 7 and Figure 8. As can be seen from, our loss 

 



converges after around 5000 iterations. The accuracy 

on the testing set can be up to 75%. 

Figure 7: Weights of the 2nd layer 

Figure 8: Loss History of Training 

3.3.4 Convolutional Neural Networks 

1) Architecture 

We implement a simple convolutional neural 

networks based on Tensorflow. Our networks have 3 

convolutional layers. Each convolutional layer 

comes with a max pooling layer to do down-

sampling. The filters we use in each layer are 

specified in the figure 10. We also use a softmax 

classifier to output class scores. 

2) Regularization 

This time we use dropout [9] method to prevent 

from overfitting. While training, neurons are 

dropped out (set to zero) at certain probability. No 

dropout is implemented during testing. 

 

Figure 9: Dropout. Figure taken from “Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting” that 

illustrate the idea 

 

3) Result 

Our loss function converges after around 6000 

iterations and can achieve up to 78% accuracy on 

our testing set. 

 

Figure 11: Loss History of CNN Training 

4. Discussion and Future Work 

4.1 Accuracy of Car Make Identification 

For the project, we only implement two simple 

neural networks. They give relatively good result 

compared to SIFT matching. Since we only have 

100 training images for each car make, the trained 

networks might be biased so that the accuracy stays 

around 75%~78%. We believe the accuracy can be 

improved by using larger datasets. Besides, in our 

results, a regular neural networks and a 

convolutional neural networks both achieve 

satisfying results. However, we still consider 

convolutional neural networks a better method to do 

car make identification. Regular neural networks 

will fail to handle huge number of parameters and 

lead to overfitting when input images are large [8]. 

With larger datasets and deeper convolutional neural 

networks, our proposed method can be robust and 

accurate in car make recognition. 

 

 

 

 

 

 



 

 

4.2 Removing False Positives 

Although cascading several adaboost classifiers can 

effectively reduce false positive rate. Our results still 

suffer from false positive detections when doing real 

time tracking as shown in Figure 13. False positives 

confuse the drivers and can be dangerous. Hence we 

did several optimization to reduce false detection.  

Figure 12: False Positive Detection 

First, it is observed that false positive areas are not 

stable. It may appear in one frame, but disappear in 

another frame. So we only keep those detected areas 

that appear in several frames as “true positive area”. 

Second, most traffic signs are on the right side of the 

video. Our detector only target on those areas that 

are most likely to have traffic signs. This not only 

reduces false positive rates, but improves the 

efficiency as well.  

However, there are still some false positives that 

cannot be removed by our proposed methods. Figure 

12 is an example. It can be seen that the detected 

areas are very similar to the keep right sign. We find 

that traffic signs that have relatively simple patterns 

are more likely to be falsely detected, since their 

features are not distinct enough.  Our method works 

pretty well for stop signs. However when it comes to 

keep right signs and pedestrian crossing signs, we 

get a few false positives. Here comes a paradox. 

When people design a traffic sign, they want to 

make it simple and easy to remember. However, 

what are simple to human can confuse computers 

sometimes, for they do not distinguish themselves 

from other objects well enough.   

4.3 Future Work 

Future improvement will mainly focus on improving 

the robustness of the system in the areas of traffic 

sign detection and vehicle make identification. To 

increase the robustness and the accuracy of the 

traffic signal detection on any signs against different 

weather condition, more dataset need to be collected 

and trained in the more complex algorithm model, 

especially for traffic signals like “keep on right lane”. 

For the vehicle model identification, deeper 

convolutional neural network will be implemented 

and larger training data set will also be collected in 

order to substantially increase the accuracy of 

vehicle make detection on the real-time road. 
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Figure 10: 

Architecture of 

Convolutional 

Neural Networks 
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7. Appendix 

Traffic Sign Recognition: Chen Zhu 

Vehicle Deviation Detection: Zihui Liu 

Vehicle Make Detection: Chen Zhu & Zihui Liu 

Proposal: Chen Zhu & Zihui Liu 

Poster: Chen Zhu & Zihui Liu 

Final Report: Chen Zhu & Zihui Liu 

 


