
Advanced Driver Assistant System

Zihui Liu zihui6@stanford.edu

Chen Zhu chen0908@stanford.edu

Department of Electrical Engineering

Abstract

In this project, we designed an advanced driver

assistant system with three functions: traffic sign

recognition, lane deviation detection, and car

make identification. The traffic sign recognition

implements Viola and Jones detector to

accurately detect the traffic sign ahead. Hough

transforms and edge detection are used in the

lane deviation detection. For vehicle make

identification, two models using 2-layer neural

network and convolutional neural network have

been constructed. These two models will provide

high accuracy testing result after training

processes.

Keywords: Object Detection, Deep Learning, Edge

Detection, Hough Transform

1. Introduction

Advanced driver assistant systems (ADAS) have

been implemented in many vehicles to help increase

both the safety of drivers and pedestrian. The related

technology is also used to develop self-driving cars.

Three features including traffic sign recognition,

lane deviation detection and car make identification

in ADAS that our team built. Traffic sign

recognition is crucial to remind the drivers the traffic

signs ahead in order to prevent accidents caused by

the traffic sign ignorance in the bad weather

condition. It can be seen as another eyes to guarantee

driving safety on the road. Lane deviation detection

system provides lane detection and stability

determination, giving drivers warning in the

condition that car drifting into directions out of lane.

Car make identification is a useful feature when

drivers are interested in the make and model of car

in their front. We will review these three features in

details in following sections.

2. Related Work

2.1 Traffic Sign Recognition

D.M. Gavrila [1] implemented template-based

correlation method to identify potential traffic signs

in images called distance transforms as detection

method. Then radial basis function network is used

for classification. Miguel A Garcia-Garrido et al. [2]

detected the shape of traffic signs using Hough

Transform and used several SVM classifier with

Gaussian kernel and probability estimate output to

determine about the information on the traffics signs.

 2.2 Lane Deviation Detection

Jia He et al. [3] used the Canny detector to find the

image gradient and then set threshold for edge

detection. Then they implemented the Hough

transform as linear model fitting and then set the

region of interest to achieve lane detection. Anik

Saha et al. [4] implemented steps including selecting

RGB image, converting RGB to grayscale,

extracting feature, subtracting unwanted recognizing

road and road lane for real-time automated road lane

detection. Prof. Sachin Sharma et al. [5] used the

algorithms following steps of Top-Hat Transform,

Dynamic Threshold, ROI Segmentation, Hough

Transform, Lane Departure decision.

2.3 Car Make Identification

Sparta Cheng et al. [6] implemented steps including

interest point detection using Scale Invariant Feature

Transform (SIFT) and Harris corner detection,

interest point matching using Fast Normal Cross

Correlation, and inlier extraction using RANSAC.

3. Algorithm and Implementation

3.1 Lane Detection

Lane deviation detection includes the functions of

lane detection and stability determination. The

algorithms contain two main parts, the edge

detection and Hough Transform & Hough peak

detection. For each frame in the video, first set the

area in the image for further image processing. Our

team typically selected the lower area of each picture

frame in order to get less noise from the background

part of image. The edge detection algorithm then

mailto:zihui6@stanford.edu
mailto:chen0908@stanford.edu

applies to the region selected. Using the Hough

transform, the angles of lanes can be found in each

frame and lanes can be successfully detected. For

stability determination feature, we match the lane

markers found in the current video frame with the

lane markers detected in the previous video frames.

The algorithm will warn the driver if the vehicle

moves across the lane marker. The algorithm is

pretty robust against multiple road conditions. For

the parameter setting of the algorithm, the number of

row in the image being process starts from row 800

since the size of the image is 1080 x 1920. The

maximum allowable change of lane distance metric

between two frames is 50 pixels. The minimum

number of frame a lane must be detected to define a

valid lane is 10 while the maximum number of

frame can be missed without marking it invalid is 10.

By setting those parameters, the algorithms can have

good performance against different driving

circumstances. Our work is based on MATLAB

Computer Vision System Toolbox. Below is the

result when testing on the real-time driving video.

Figure 1.a: Result 1 in real time video

Figure 1.b: Result 2 in real time video

3.2 Traffic Sign Detection

We use viola and Jones Detector [7] to detect traffic

signs.

3.2.1 Algorithm

1) Features

Viola and Jones propose to use Harr-like feature

extractor to extract features:

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = ∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 − ∑𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘

Then we normalize the features to make it have a

norm of 1:

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑎𝑟𝑒𝑎𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑤𝑖𝑛𝑑𝑜𝑤

According to Viola et al., for a 24 by 24 feature

window, we can extract approximately 160,000

dimensions of features.

Figure 2: Harr-like Feature Templates

2) Classification

160,000 dimensional feature is a large number.

Viola et al. assume in the paper that only a small

fraction of these features are useful and that the main

problem is how to find useful features for this small

fraction. Adaboost classifier is a suitable suitable

choice, because this classifier has feature selection

capabilities. The principle of Adaboost is to

construct a strong classifier connected in parallel by

multiple weak learners. Each weak learner multiplies

its classification result by weights according to its

own accuracy. The final output is the sum of all

classifiers output. The classification accuracy of

each weak classifier can be very low, but the

accuracy of the whole strong classifier is very high.

Traditional adaboost classifier is still too time-

consuming. Viola et al. creatively modified the

adaboost classifier to a cascade of several adaboost

classifiers. Each classifier has high true positive rate

(about 99%), while false positive rate is also high

(about 50%). However, if we cascade 20 such small

adaboost classifier, the false positive rate will

become (50%)20 = 9.5 × 10−7 , while the true

positive rate remains high.

3) Optimizing efficiency by computing integral

image

Viola et al. propose to use integral image to improve

computing efficiency.

𝐼𝑖𝑚𝑔(𝑥, 𝑦) = ∑ 𝑖𝑚𝑔(𝑖, 𝑗)

𝑖≤𝑥,𝑗≤𝑦

This can be done within O(mn). Once we have the

integral image, we can compute one feature within

constant time.

𝑠𝑢𝑚(𝑎, 𝑏, 𝑐, 𝑑) = 𝐼𝑖𝑚𝑔(𝑐, 𝑑) + 𝑠𝑢𝑚(𝑎, 𝑏) − 𝑠𝑢𝑚(𝑎, 𝑑) − 𝑠𝑢𝑚(𝑐, 𝑏)

3.2.2 Implementation Detail and Result

In our project, we choose three traffic signs to detect:

stop sign, keep right sign, pedestrian crossing sign.

LISA Traffic Sign Dataset is selected to train our

feature detector. For each traffic sign, we use 60~80

training samples. We cascade 10 adaboost classifier

for classification. Our code is built upon MATLAB

vision toolbox.

Figure 3: Selected Traffic Signs

Below are some of our results. Once the feature

detectors are trained, they can detect our interested

areas very efficiently. Using this method, we can do

real-time traffic sign detection.

Figure 4: Traffic Sign Detection Results

3.3 Car Make Identification

Car make identification based on the behind view

has been a challenging problem. Since pictures of

cars are 3 dimensional images, traditional image

matching method such as SIFT or SURF descriptor

cannot give accurate results. Besides, the difference

among different sedan cars are trivial, it’s also

difficult to achieve accurate results using PCA or

Fisher LDA. To achieve more accurate results, we

propose to use deep learning methods. In our project,

we tried two method. One is a regular 2-layer neural

networks, and the other one is convolutional neural

networks. Both give better results compared to

traditional image matching methods.

Figure 5.a: Original images of Hyundai Sonata

Figure 5.b: SIFT key points overlaid on images

Figure 5.c: Feature correspondences after distance ratio test

Figure 5.d: Feature correspondence after RANSAC

3.3.1 SIFT Descriptor

For car make identification, we first came up with

using the SIFT descriptor and SIFT matching with

RANSAC. The matching results of two images from

Hyundai Sonata are shown in Figure 5.

From Figure 5, we observe that only a very few

points get matched while those points don’t indicate

the same feature on the vehicle. SIFT matching is

robust with matching among planes. However, it

cannot handle 3D image matching.

3.3.2 Data Collection

In order to train the models on 2-layer neutral

network and convolutional neutral network. For each

vehicle model (Acura ILX, Honda Civic, Hyundai

Sonata) investigated in this project, 120 photos of

each car make rear view have been collected. So

there are totally 360 photos for the entire data set. A

portion of photos are obtained from google images

while another portion we collected using photos

taken on I-101 and I-280. There are some constraints

on gathering data. One constraint is that there is not

a comprehensive database for rear view of vehicles

on the web and the number of vehicle rear view

picture from google images is limited. Also there are

time and road condition limitations for our team to

take rear view pictures from the vehicles on the road.

Our team chooses these three sedans as the target of

investigation not only because they are cars

normally seen on the road but also because they

have similar appearances and not easy to identify

even for the human eyes. In the training process, 100

out of 120 (83.3%) photos from each car make

randomly chosen from the data set. The test data is

the remaining 20 out of 120 (16.7%) photos from

each vehicle make.

3.3.3 2-layer Neural Networks

1) Architecture

Figure 6: Architecture of our neural networks

Our input images are 64 by 64 by 3 RGB images.

The neural networks we use have two fully

connected layer. In each FC layer, there are 64

neurons. Each neuron is has the same dimension as

the input image. In the output layer, we choose to

use softmax loss function to output class scores and

select the class label which has the largest class

score as our output class label.

2) Regularization

To prevent overfitting, we apply L2 regularization to

our networks. We penalize the squared magnitude of

all parameters by adding the term
1

2
𝜆𝜔2 to every

weight of our networks, where λ is the regularization

strength.

3) Results

Below is the weight of the second FC layer of our

neural networks. Loss history can be seen from

Figure 7 and Figure 8. As can be seen from, our loss

converges after around 5000 iterations. The accuracy

on the testing set can be up to 75%.

Figure 7: Weights of the 2nd layer

Figure 8: Loss History of Training

3.3.4 Convolutional Neural Networks

1) Architecture

We implement a simple convolutional neural

networks based on Tensorflow. Our networks have 3

convolutional layers. Each convolutional layer

comes with a max pooling layer to do down-

sampling. The filters we use in each layer are

specified in the figure 10. We also use a softmax

classifier to output class scores.

2) Regularization

This time we use dropout [9] method to prevent

from overfitting. While training, neurons are

dropped out (set to zero) at certain probability. No

dropout is implemented during testing.

Figure 9: Dropout. Figure taken from “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting” that

illustrate the idea

3) Result

Our loss function converges after around 6000

iterations and can achieve up to 78% accuracy on

our testing set.

Figure 11: Loss History of CNN Training

4. Discussion and Future Work

4.1 Accuracy of Car Make Identification

For the project, we only implement two simple

neural networks. They give relatively good result

compared to SIFT matching. Since we only have

100 training images for each car make, the trained

networks might be biased so that the accuracy stays

around 75%~78%. We believe the accuracy can be

improved by using larger datasets. Besides, in our

results, a regular neural networks and a

convolutional neural networks both achieve

satisfying results. However, we still consider

convolutional neural networks a better method to do

car make identification. Regular neural networks

will fail to handle huge number of parameters and

lead to overfitting when input images are large [8].

With larger datasets and deeper convolutional neural

networks, our proposed method can be robust and

accurate in car make recognition.

4.2 Removing False Positives

Although cascading several adaboost classifiers can

effectively reduce false positive rate. Our results still

suffer from false positive detections when doing real

time tracking as shown in Figure 13. False positives

confuse the drivers and can be dangerous. Hence we

did several optimization to reduce false detection.

Figure 12: False Positive Detection

First, it is observed that false positive areas are not

stable. It may appear in one frame, but disappear in

another frame. So we only keep those detected areas

that appear in several frames as “true positive area”.

Second, most traffic signs are on the right side of the

video. Our detector only target on those areas that

are most likely to have traffic signs. This not only

reduces false positive rates, but improves the

efficiency as well.

However, there are still some false positives that

cannot be removed by our proposed methods. Figure

12 is an example. It can be seen that the detected

areas are very similar to the keep right sign. We find

that traffic signs that have relatively simple patterns

are more likely to be falsely detected, since their

features are not distinct enough. Our method works

pretty well for stop signs. However when it comes to

keep right signs and pedestrian crossing signs, we

get a few false positives. Here comes a paradox.

When people design a traffic sign, they want to

make it simple and easy to remember. However,

what are simple to human can confuse computers

sometimes, for they do not distinguish themselves

from other objects well enough.

4.3 Future Work

Future improvement will mainly focus on improving

the robustness of the system in the areas of traffic

sign detection and vehicle make identification. To

increase the robustness and the accuracy of the

traffic signal detection on any signs against different

weather condition, more dataset need to be collected

and trained in the more complex algorithm model,

especially for traffic signals like “keep on right lane”.

For the vehicle model identification, deeper

convolutional neural network will be implemented

and larger training data set will also be collected in

order to substantially increase the accuracy of

vehicle make detection on the real-time road.

5. Acknowledgement

We would like to thank Professor Gordon Wetzstein

for his support and instruction throughout the course.

We also want to thank Hershed Tilak for his

mentorship on our project. Finally, many thanks to

Yiran Deng and Haoxuan Chen, for their help on

teaching us to use Python and Tensorflow.

Figure 10:

Architecture of

Convolutional

Neural Networks

6. Reference

[1] Gavrila, D. M. (1999). Traffic sign recognition

revisited. In Mustererkennung 1999 (pp. 86-93).

Springer Berlin Heidelberg.

[2] García-Garrido, M. A., Ocana, M., Llorca, D. F.,

Arroyo, E., Pozuelo, J., & Gavilán, M. (2012).

Complete vision-based traffic sign recognition

supported by an I2V communication system.

Sensors, 12(2), 1148-1169.

[3] He, J., Rong, H., Gong, J., & Huang, W. (2010,

November). A lane detection method for lane

departure warning system. In Optoelectronics and

Image Processing (ICOIP), 2010 International

Conference on (Vol. 1, pp. 28-31). IEEE.

[4] Saha, A., Roy, D. D., Alam, T., & Deb, K.

(2012). Automated road lane detection for intelligent

vehicles. Global Journal of Computer Science and

Technology, 12(6).

[5] Sharma, S., & Shah, D. J. (2003). A much

advanced and efficient lane detection algorithm for

intelligent highway safety. Computer Science &

Information Technology, 51.

[6] S. Cheung, A. Chu. Make and Model

Recognition of Cars.

https://cseweb.ucsd.edu/classes/wi08/cse190-

a/reports/scheung.pdf

[7] Viola, P., & Jones, M. (2001). Rapid object

detection using a boosted cascade of simple features.

In Computer Vision and Pattern Recognition, 2001.

CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on (Vol. 1, pp. I-511).

IEEE.

[8] CS231n lecture notes

[9] Srivastava, N., Hinton, G. E., Krizhevsky, A.,

Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research,

15(1), 1929-1958.

7. Appendix

Traffic Sign Recognition: Chen Zhu

Vehicle Deviation Detection: Zihui Liu

Vehicle Make Detection: Chen Zhu & Zihui Liu

Proposal: Chen Zhu & Zihui Liu

Poster: Chen Zhu & Zihui Liu

Final Report: Chen Zhu & Zihui Liu

