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Abstract—An approach to mitigating noise, the effects of 

vignetting and illumination non-uniformity, reflections, and 

distance in surgical fluorescence imaging is proposed and 

explored experimentally.  

I. INTRODUCTION 

Dyes, such as Indocyanine Green (ICG), are used in several 
surgical applications, including highlighting regions of interest 
in anatomy when visible light is not ideal for doing so, 
visualizing blood flow, and locating pathogens. Visualization is 
typically accomplished by injecting the dye into the 
bloodstream or region of interest, illuminating the scene with a 
laser tuned to the absorption wavelength of the dye, and 
capturing the scene with a camera system that filters out the 
laser’s wavelength but is sensitive to the dye’s emission 
wavelength. The resulting fluorescence image is typically 
overlaid on a visible light image of the scene. 

Fluorescence images are more difficult to use than typical 
visible spectrum images for a few reasons. Chief among these 
reasons is the physical difference between the two modes of 
imaging. Images in the visible spectrum consist almost entirely 
of surface reflections of the illuminant, whereas in fluorescence 
imaging in endoscopic surgical applications, the illuminant 
must travel through at least one layer of tissue and be absorbed 
by the dye that has concentrated in the blood or bile, which 
then emits photons at lower energy levels, which must travel 
back through the tissue before finally being captured by the 
camera. The deleterious effect of all of these stages of energy 
transfer, of course, is considerably magnified as distance from 
the subject increases due to the exponential relationship 
between incident power and distance. Consequently, 
fluorescent signals are even more sensitive to degradation in 
the optical path and irregularities in the pattern of the 
illuminant than are visible signals. Additionally, in the 
endoscopic surgical application, the subject being imaged is 
typically dominated by moist tissue, which means all forms of 
incident light can easily produce specular reflections. Since 
these reflections can slightly alter the wavelength of the 
reflected light, any reflection of the dye excitation light can 
actually cause it to move outside of the effective range of the 
imaging system’s excitation light filter, making it no longer 
distinguishable from the dye’s emission wavelength. Again, 
this not really a problem for the visible light portion of the 
image. These problems, and potentially others, contribute to 

the quality of surgical fluorescence images being very 
dependent on circumstances, which reduces their overall 
diagnostic and reference utility.  

The goal of this project is to process a set of surgical 
fluorescence videos to make the fluorescence more uniform 
across the scene, more robust to the effects of distance, and 
sharper in its definition of anatomy. 

II. PREVIOUS WORK 

A. Noise 

Regarding noise from the system, Qu, Zhang, and Jia 
suggest an efficient method for denoising images affected by 
salt and pepper noise, combining the benefits of adaptive 
filtering and weighted filtering [1]. The noise in the images in 
the current project are not necessarily subject to salt and pepper 
noise, but they do have a good deal of noise due partially to the 
low lighting conditions, so this approach still seems beneficial 
as a basis for denoising. Removing noise from the grayscale 
image will be important because it allows subsequent 
processing steps to produce more reliable results.  

B. Vignetting and illumination non-

uniformity 

Zheng et al discuss a method of correcting for vignetting 
using radial and semi-circular tangential gradient distributions 
[2]. They assume based on observation of many natural images 
that positive and negative gradient distributions tend to be 
symmetric, so when they are calculated based on an estimated 
optical center and the results are not symmetric, a new 
estimated center can be found by minimizing the asymmetry, 
with a similar approach leading to an approximation of the 
vignetting in the optical system. In [3], Zheng works with a 
different group on a related premise – that intensity gradients in 
the image should be smooth except near the edges of objects. 
Again the approach is to apply estimated corrections to the 
illumination bias in different parts of the image until the image 
gradient properties match the assumption. The bias can then be 
used to correct for lighting non-uniformity. Both of these 
approaches are promising for the current application. 

C. Specular reflections 

Shafer proposes a dichromatic projection of color images 
[4] into a parallelogram in a plane defined by an achromatic 



vector and a colored vector. The achromatic vector is 
essentially a grayscale representation, while the colored vector 
codes information about the body reflection color of the image 
subject. Using such an analysis in the current application can 
aid in finding reflections which may contribute to false 
detection of fluorescence, which would allow a processing 
algorithm to remove the potentially false fluorescence 
information from the image.  

 

III. ALGORITHM DEVELOPMENT 

The images and videos used for this project were obtained 
at the author’s place of work during the normal course of 
research and development activities. All images are from 
animal labs and therefore contain no patient information 
whatsoever. These images consist of a green color, indicating 
the presence of fluorescence (which usually occurs outside the 
visible spectrum), overlaid on a grayscale background, 
showing the scene as illuminated by visible light. Both 
components of the image are captured simultaneously by the 
same endoscopic camera system. The rigid endoscope uses a 
fiber optic transmission channel to deliver illumination, both in 
the visible range and at the excitation wavelength of the 
fluorescent dye, from an external light source to the inside of 
the subject. Reflected light is then transported from inside the 
subject through a series of lenses housed in the rigid endoscope 
and out to the camera’s sensors. The resulting combined image 
is sampled regularly to construct a video signal, which is 
displayed on screens in the operating room to allow the 
surgeon to visualize the anatomy without performing open 
surgery on the subject. The video signal is also captured and 
stored digitally by an archival device.  

The works mentioned above combined with working 
knowledge of the imaging systems used in endoscopic surgical 
fluorescence applications were implemented in various forms 
to process videos of surgical fluorescence in an attempt to 
improve their clinical usefulness. Fig. 1 shows an example of 
an image that could benefit from processing, and this same 
image will be used throughout this paper to demonstrate the 
effects of each processing step. The amount of noise is quite 
obvious, and it makes distinguishing features in the image 
difficult. The areas near the top of the screen show a noticeable 
decay in fluorescence intensity. Specular reflections can be 
seen in quite a few places in the image, and many of them 
exhibit a distinct green tinge, indicating likely false detection 
of fluorescence. Finally, the fluorescence signal itself, even 
where it is contiguous and distinct, lacks obvious edges and 
gradually bleeds into its surroundings. All of these 
characteristics are undesirable, and the goal of this project is to 
correct problems like these.  

Ideally, the fluorescent and grayscale images could be 
processed independently at the time of acquisition. In this 
project, however, post-processing of the images was the chosen 
approach because real-time processing of each component 
would only be achievable through implementation of the image 
processing algorithms in an FPGA design within the camera 
system. The scope of such an effort far exceeds the amount of 
time allotted for this project, so only the combined image from 

the camera output, via the archival device, is available. The 
videos are MPEG4-encoded, which means they lack some of 
the original information and can include encoding artifacts, but 
the still images captured by the archival system are bitmaps 
that do not suffer the same problems. These bitmaps were 
therefore used more often during algorithm development than 
individual frames extracted from the videos. Once the 
algorithm was in place, it was used to post-process groups of 
video frames. 

A. Circular masking and splitting 

The videos in this application are recorded through a 
circular scope attached to a rectangular image sensor. As a 
result, part of the active image is actually just a black circular 
border. Some light does make its way into this region and some 
noise from the sensor occurs, so there is a bit of signal present. 
But there should not be, and algorithms like bias correction 
would seem to function better when the area that should be 
black is truly black. Therefore, circle detection was 
implemented in order to create a mask that could be used to 
enforce this border. Fig. 2 shows a detected circle imposed on 
the image, and Fig. 3 shows a mask developed from that circle.  

The images also must be split into grayscale and 
fluorescence components for proper processing. This is 
accomplished by simply averaging the non-green channels of 
the image to find a grayscale representation, then subtracting 
the grayscale image from the green channel to leave only the 
fluorescence. The images resulting from applying this process 
to Fig. 1 are shown in Fig. 4 and Fig. 5. It should be noted that 
the averaging and subtracting process means that there is 
almost no apparent noise in the fluorescence image; denoising 
therefore will only be necessary for the grayscale image. 

B. Denoising 

Denoising was initially attempted by adapting the method 
proposed in [1]. One of the central features of this method is 
the so-called “ROAD” operator, which calculates absolute 
differences between all pixels in the window, at each pixel 
position, and aggregates a number of the smallest differences. 
This is a metric of how similar the pixel in question is to the 
rest of the frame. This metric is ultimately used to decide 
whether the pixel is really noise or just normal image data that 
should be left as-is. The window size for these “ROAD” 
calculations is also based on an iterative determination of the 
number of similar neighboring pixels – a mix of noise and non-
noise data is required for the algorithm to function correctly. 
Before windowing, though, this method employs a guess about 
whether the pixel is even noise to begin with; in theory, this 
allows the algorithm to be more computationally efficient than 
other non-discriminating denoising approaches.  

Due to the computational load of iterating over so many 
data points and their neighbors, especially in 1920x1080 
resolution images (as is the case in this project), this method 
turned out to be quite slow, which made attempts to 
characterize and improve the algorithm prohibitively long, and 
no proper conclusion on the appropriate parameters was 
reached. The attempted implementation is therefore included in 
the code base, but it was not used in the final processing 
algorithm for this project. Instead, simple median filtering was 



used, with an 11x11 kernel deemed appropriate for single-
image processing and a 7x7 kernel chosen for many-frame 
video processing to save on computation time while sacrificing 
results to a certain extent. Fig. 6 shows the grayscale image 
after median filtering with the 11x11 kernel, where a drastic 
reduction in the noise level is apparent but the sharp features of 
the image do not appear to be greatly diminished.  

C. Non-uniformity correction 

The next step was to address the compounding issues of 
vignetting (light falloff radially from the optical center of the 
image due to the shape of the lenses used to acquire the image) 
and lighting non-uniformity (the differing intensity of incident 
light across the image due to the directionality and shape of the 
illuminant) in the fluorescence image. The visible image 
suffers from these effects, but as mentioned earlier, the 
fluorescence is degraded more noticeably since its overall 
intensity is lower. However, since the fluorescence image often 
consists of zero data in large regions, characterization of non-
uniformities and degradations was carried out on the grayscale 
image first to attain knowledge of the system’s behavior which 
could then be applied to correct the fluorescence image. 

The vignetting correction algorithm produced promising 
results in some cases, but it seemed to struggle when image 
intensity was noticeably asymmetrically distributed. This 
makes sense since the operating principle of the algorithm is 
symmetric equalization of the positive and negative gradient 
distributions. Unfortunately, it must be assumed that the image 
intensity for most surgical video of the type being processed 
here will be decidedly asymmetric given the irregular shape of 
the anatomy being visualized and the relative differences in 
depth between one part of the image and another in such a 
confined space. This means the vignetting correction algorithm 
will see larger intensity gradients in some areas near the center 
of the image than would be expected in, for example, an 
outdoor image with natural lighting. As a result, it will 
incorrectly map the light falloff in the image and will weight 
the output improperly.  

The bias correction algorithm, on the other hand, seemed to 
do a very good job of making the intensity across the image 
more even, bringing out details near the darker edges of the 
scene while dampening the brightest portions. Fig. 7 and Fig. 8 
compare the effects of the two algorithms on the test image. It 
should be fairly obvious that the bias correction is positioned to 
much more effectively accomplish the stated goal of leveling 
the fluorescence intensity across the whole image to account 
for lighting non-uniformity and light falloff. Fig. 9 shows the 
fluorescence image resulting image after bias correction. Note 
especially the area near the top edge of image where the 
fluorescence of the central duct becomes much more obvious 
and the area 45 degrees clockwise is significantly amplified as 
well. 

D. Specular Reflections 

Shafer’s method for finding specular reflections depends on 
the use of three channels of color data. In the images used for 
this project, there are miniscule differences between the 
grayscale data in each of the three color channels. But these 
differences are small enough that, as discussed above, a basic 

assumption is that the average of the red and blue channel data 
is sufficient to approximate the grayscale component of the 
green channel data. This implies that Shafer’s method itself 
will not be perfectly applicable in this scenario. Instead, 
Shafer’s insights provided a path forward for a different 
approach. The key finding was that specular reflections tend to 
be those parts of the image closest to the achromatic – 
grayscale – color axis. 

Since specular reflections really are achromatic, the only 
way to differentiate them from other achromatic data is by 
comparing intensity. But an intensity threshold alone quickly 
proved not to be sufficient to separate reflections from useful 
data. Instead, it was also observed that reflections have defined 
edges. In light of this, an image gradient was calculated using 
the Sobel operator, and then both the gradient image and the 
intensity image were transformed into binary images by 
choosing thresholds based on their histograms. (This choice 
was intended to make the algorithm resilient to changes in 
overall image intensity and scene variation.) The binary images 
were then combined with an AND operation to locate the most 
defined edges of the brightest regions in the image – a good 
description of the borders of specular reflections. Finally, 
morphological image processing was applied to this combined 
binary image to close these regions and attempt to replicate the 
reflections from the original image. Fig. 10 shows the result for 
the test image, which corresponds very well with the original 
image data. The structural elements chosen for the closing and 
erosion operations were optimized for smaller reflection 
regions under the assumption that camera shuttering 
functionality would prevent very large regions of reflections 
from occurring. 

E. Correction of reflections and 

background fluorescence 

Once the reflection locations were obtained, the goal was to 
reduce their effect on misperception of fluorescence. A 
gamma-correction type of approach was deemed appropriate 
for this. For the grayscale image, the reflections are distracting 
since they are so bright. For the fluorescence image, for 
reasons explained earlier, it is likely that the excitation source 
also reflects in the same regions, which could result in false 
detection of fluorescence. The assumption is therefore that both 
the grayscale and fluorescence signals should be de-
emphasized in these regions, even if it makes one or both of 
them a bit discontinuous. Using the binary mask of the 
reflection regions, pixel values for both images in these regions 
are subjected to exponentiation, reducing their intensity since 
their pixel values are in the interval [0, 1].  

A similar approach was taken to minimize the bleed of 
fluorescence away from the boundaries of the true fluorescence 
in the image. As with the reflections, a histogram-and-
threshold approach was used to isolate the brightest 
fluorescence values (which had to occur after reflection 
correction, which should illuminate the choice behind the 
ordering of these operations). As before, taking this approach 
means the algorithm is somewhat generalized and therefore 
robust to changes in illumination intensity and the scene. This 
is especially important for the fluorescence image since, as was 
mentioned previously, intensity depends greatly on distance 



from the subject, so a goal of this project is to make that 
variation less obvious. Below the threshold, intensity values 
are weighted by their ratio with the threshold before 
exponentiation, resulting in a more drastic falloff characteristic 
than in the de-emphasis of the reflection correction. This is 
helpful in suppressing low-level fluorescence signals that 
gradually appear as the endoscope gets closer to tissue in the 
scene. 

F. Reconstruction 

After the above corrections are made, one task remains. 
The grayscale and fluorescence images are recombined into a 
single image by reversing the process that was used to split 
them from the original image. The combination of the 
reflection corrections and suppression of background 
fluorescence with all the previous steps, combined back into a 
single image, can be seen in Fig. 11. The image has seen 
significant noise reduction; reflections have been dampened 
and the green tinge has been removed from them; the intensity 
of fluorescence in the correct anatomy is consistent across the 
image, and it rapidly decays everywhere else; in short, the 
resulting image is more clinically desirable and therefore 
indicates that the algorithm is a good candidate for 
experimentation.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

The algorithm was fit into a processing loop that would 
read in many frames from a video, process each frame, and 
then assemble a resulting processed video. To save on 
computing time, some expensive steps were only carried out on 
the first frame – notably, circle fitting and bias correction. This 
introduces inherent disadvantages, especially concerning bias 
correction, since a change in endoscope position relative to the 
scene can substantially affect the distribution of light. It is 
possible for the endoscope to move in relation to the camera 
and therefore invalidate the circular mask approximation, but 
this is far more unlikely. The results from processing the test 
videos, however, indicate that in most cases the assumption of 
constant bias correction was not too damaging.  

The final algorithm was run for a set of test videos, four of 
which are uploaded to the course site for reference. They are 
labeled A, B, C, and D. The resulting videos had “_proc” 
appended to their filenames and are also uploaded.  

Video A is a clip that shows a good deal of ambient 
fluorescence. It also features reflections with green 
components on both the surgical instrument and various parts 
of the anatomy. Variations in intensity correlated to changing 
distance from the subject and changing viewing angle are 
present as well. The processed version of Video A shows 
improvement in all of these aspects, and it does a much better 
job of highlighting only the tissue that really is fluorescing 
except for a couple of moments when the scope and the 
anatomy are moving. Artifacts from the bias correction are 
visible in the 6 o’clock to 9 o’clock regions of the image, 
however, especially towards the end of the video. The 
fluorescence intensity in this area is boosted enough that the 
ambient suppression portion of the algorithm no longer 
removes it.  

Video B shows an extremely challenging situation in which 
the entire image is flooded with apparent fluorescence, largely 
because the endoscope is so close to the anatomy. The defined 
step changes in intensity visible in the video are the result of 
changes in the light source power and camera system gain 
levels in attempts by the user to manually improve the image. 
The approach is clearly only partially successful until the scope 
is pulled back from the scene, and then uncertainty remains 
about future visualization since the system’s visualization 
settings have changed. The processed version of the video 
shows the algorithm is not able to completely remedy the 
situation, but it does de-emphasize fluorescence on the liver 
wall and create a defined border around the fluorescence of the 
ducts. It also maintains much more constant visualization 
qualities during the application of new system settings, which 
equivalently means that it is somewhat robust to distance from 
the subject – another major goal of the algorithm. 

Video C shows a scene that should have a relatively 
constant medium level of fluorescence across the middle third 
of the image (the liver), and quite a few reflections are present 
as well. The processed version of the video handles these 
reflections generally as desired, and suppressed ambient 
fluorescence near the top and bottom of the image, but it 
mitigates much of the fluorescence that should still be present. 
A very noticeable combination of the MPEG encoding and the 
suppression algorithm’s hard thresholding appears here as well, 
demonstrating some flaws in this approach. 

Video D is similar to Video C, and the results after 
processing are also similar. The artifacts continue to be very 
noticeable here, but once again the algorithm does accomplish 
good recognition and suppression of both reflections and 
background fluorescence. These benefits come at the cost of 
removing useful information. 

V. CONCLUSION 

The algorithm developed for this project is a promising first 
step towards intelligent processing of surgical fluorescence 
video. Many parameters can and should be tweaked to improve 
performance, and the transition from threshold levels to 
exponential corrections should be smoothed. Additionally, the 
success of current results is only analyzable by surgeons or 
medical device professionals familiar with the procedures and 
technologies involved. Even though that analysis by experts is 
similar in nature to evaluating the success of an optical 
character recognition system, it would be worthwhile to try to 
pursue a numerical metric of success. If found, such a metric 
could be used to automate future algorithm development and 
improve ability to iterate and fine-tune the approach. This work 
will be carried forward further by the author. 
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Fig. 1. Bitmap of surgical fluorescence image 



 
Fig. 2. Detected circle imposed on image 

 

 

 
Fig. 3. Circular scope mask 

 

 



 
Fig. 4. Grayscale image 

 

 

 
Fig. 5. Fluorescence image 

 

 



 
Fig. 6. Denoised grayscale image using an 11x11 median filter 

 

 

 
Fig. 7. Vignetting correction 

 

 



 
Fig. 8. Bias correction 

 

 

 
Fig. 9. Bias correction of fluorescence image 

 

 



 
Fig. 10. Binary approximation of specular reflections in the grayscale image 

 

 

 
Fig. 11. Combined processed image 


