
Recognition of Thai Characters
and Text from Document Templates

Nattapoom Asavareongchai | Evan Giarta
nasavare@stanford.edu | evgiarta@stanford.edu

Department of Electrical Engineering, Stanford University
EE 368 Digital Image Processing, Autumn 2016

Abstract—We created an image processing system that takes
in an input image of a text document, with Thai language as
the primary text language, taken from a phone camera and
outputs a matching between each Thai character detected in the
document to a particular Thai template character. The output
could then be used to input into a translation software to translate
the Thai sentences out automatically without the need of a
human translator. We implemented three different methods and
compared their accuracy and consistency.

I. INTRODUCTION

With the availability of books, reports, and journals from
different regions of the world through either the internet
or hard copies, many people would want to have access to
these information to be able to read. However, not all these
documents are translated into languages like English for
people to understand. Many important documents in other
parts of the world are written in the languages in those parts
and will usually require professional people fluent in those
languages to read and translate them manually. This could
require a very long time to do so and will require man-power.
Would it not be more efficient to take a picture of a page
from books, documents, etc. and then automatically detects
the language characters then print them out for translation
through a computer program? This report aims to give an
image processing system that is able to detect and classify
one specific language text from an image of a document
page. The language that this report will consider is Thai.

In the field of image processing and computer vision,
many people have tackle the problem of text recognition and
classification. Many of these literature however tackle the
problem of detecting other languages other than Thai. For
example, Chinese characters [1]. Some literature that works
with Thai language requires sophisticated algorithm that re-
quires machine learning, such as neural networks to tackle the
classification problem [2]. However, in this report, we propose
and analyze more simply methods that will only require image
processing techniques to classify Thai characters. This will
include using the SIFT and RANSAC algorithm, the SVD and
Principle Component Analysis technique, and XOR template
matching method. Not only will the report concentrate on the
classification part of the problem, we will also propose a pre-
processing pipeline that will clean up documents with Thai

languages by utilizing the structure of the language to detect
where texts are within an image.

II. DATASET

A. Font Templates

Obtaining a clean reference font and template images was
a critical component of this project. This was achieved by
having all of the 44 consonants and 22 vowels of the Thai
alphabet typed out on a Google Doc and scaled up to size 72
font. Zoomed-in screenshots of each character were then taken,
binarized using Otsu’s method, and cropped the bounding box
of the results. It is also relevant to note that the default Thai
alphabet font on Mac OS X is noticeably different to the
default Thai alphabet font in Windows 7.

B. Document Images

We used two particular types of documents with the dif-
ferent Windows and Mac fonts to quantify the quality of our
methods and results.

Clean documents images were created by taking a direct
screenshot of Thai text from Google Docs and saving the
image as a Portable Network Graphic (.png), as opposed
to a JPEG, so as not to lose any detail along character edges
from compression.

Test documents images were produced by snapping a picture
of document printout of Thai text at an angle, in uneven light-
ing conditions, and against dark background. Test documents
images were also produces with both fonts. The text contained
in the clean and test documents were copied from real-world
Thai newspapers.

III. METHODS

The image processing pipeline that defines our system
can be categorized into two big sections. These sections
include the pre-processing part and the text recognition part.
We combine many image processing techniques within each
sections to produce a desired output.

The input image into our system is an image of a text
document page that contains Thai characters as the only text
in the document. The image can either be a clean document
(a correctly aligned document with no blur, noise, or variable
lighting) or an image taken from a phone camera, which may
not be clean. This input is then passed into our pre-processor



to output a clean binarized image of the text. Sentences and
characters are then separated from this output and input into
our text recognition pipeline that matches these characters to
a database of character templates.

A. Pre-process

In our pre-processing pipeline, we have assumed that the
input image is not a clean document image. The four steps
are as follows: (Example output of each sub methods can be
found in the results section)

1) Locally Adaptive Thresholding: The first step in pre-
processing the image is to binarize the image. We assumed
that the image taken from a phone is an RGB image that
contains noise, regions that may not correspond to text, may
be rotated, and may have different lighting.

The image is initially converted into a gray-scale image
to remove the RGB channels and reduce the size to a 2D
matrix. The image is then filtered using a rank filter to
accentuate regions of the text. This process is similar to
dilation on a gray-scale image. We utilized the ordfilt2
function in MATLAB to do so. We then run the both the
filtered gray-scaled image and the unfiltered gray-scale image
through locally adaptive thresholding to binarize both images.
The two images are then AND together to remove small
noises that may be removed from the filtered image but not
through the unfiltered one. Note that we have to convert the
text regions into the foreground before doing the AND process.

2) Noise Removal with Region Labeling: The second step
in the pipeline is to further filter the image to remove noise
and unwanted artifacts.

To remove these artifacts, we tried to identify foreground
regions that correspond to text and regions that do not
correspond to text. We assumed that regions that are text
are similar in size and area, not too large or too small. To
implement this, we utilized region labeling. For each region
we calculated the number of pixels covering the area of the
region. We then found the mean and standard deviation of all
the regions found. Regions with area larger than or smaller
than one standard deviation above and below the mean are
then removed.

Furthermore, we also assumed that the ratio of the area
filled in by the region within its bounding box (the smallest
box that is able to include all pixels of a region) is consistent
for the Thai characters as well. Thai characters contains many
holes in their structure and cover approximately around 50%
of their bounding box. Therefore, we also decided to remove
any regions with a ratio of area filled in its bounding box two
standard deviation higher or lower than the average ratio of
all the regions. A similar technique using region labeling is
utilized.

3) Hough Transform: The input images may not necessary
be correctly oriented and may be rotated at a certain degree.
Therefore in our third step, to tackle this issue, the Hough
transform is used to find the angle of rotation of the text
sentences. The top 20 Hough peaks were recorded and
then the lines plotted. The angles of the top 20 Hough
peaks are however not consistent and angles at +-45 degrees
and +- 90 degrees keep showing up consistently with any
actual rotation angle of the text. From plotting the lines that
correspond to these Hough peaks, we found out that many
outlier angles are due to very short lines detected, which are
anomalies. Thus to remove these angles from consideration,
we removed any lines detected by the Hough transform
with a length shorter than half the longest line. This was
able to correctly removed all the anomalies. The modal
Hough angle after the anomalies are removed is then used as
the rotation angle to rotate the image to the correct orientation.

4) Sentence and Character Segmentation: The fourth and
last step in the pre-processing pipeline is to detect the regions
that are text and separate out the sentences and characters for
detection and characterization.

Since we are assuming that the text image is an image
with a document format, we therefore assumed that the text
will be typed/written within a text box with margins around
it. To find this text box, we summed up the pixels of the
columns to get a 1D vector of the x axis of the image. This is
in order to figure out the left and right boundaries of the text
box. We then plotted the cumulative sum of the pixels from
left to right. Since the text should reside in the text box, the
cumulative sum graph should show a flat region before the
text box with low number of pixels, then the graph should
rise linearly within the region of the text box (since pixels
corresponding to text are added up), then it will plateau
and flatten out when it leaves the text box and enters the
right margin. We calculated the 10% and 90% point of the
cumulative sum graph and interpolate it to estimate the x-axis
location of the 0% to 100% pixel counts that will correspond
to the text box region. This is to remove any pixel noise in
the margin regions outside the text box.

This is then repeated for the rows or the y-axis of the
image to find the top and bottom boundaries of the text box,
using the same technique. The overall resulting text box is
then found.

After finding the text box, we moved on the separate the
sentences and text into their individual characters. To do
this we assumed that each sentences are separated by empty
regions and so we sectioned out the regions of the rows with
non-zero pixels and regions with zero pixels. This is done by
first summing up the pixels for each row. If the sum of the
rows are less than a certain threshold, we say that the rows do
not correspond to part of a sentence and is an empty region
between the sentences. We therefore zero out these rows.



Then we used region labeling in 1D to label the location of
the sentences.

One difficulty that arises with region labeling of each
sentences is that the Thai language contains vowels that
exists on top and below a consonant character. These vowels
will show up as their own sentence with the region labeling
technique we used. Therefore to solve this problem, we
detected these vowel regions by find the regions with a
sentence height (thickness in the y-axis direction), smaller
than the half the average sentence height. We classify these
regions as top/bottom vowel regions and do not consider
them as a sentence. We then merged these regions with the
nearest sentence region either above or below it to create a
complete Thai sentence region.

Then for each sentences, we next separate out the characters
one by one. This is done by region labeling the x-axis regions
of the sentence (similar to the sentences case) where each
region will correspond to a section of the characters. Further
region labeling is done for each x-axis region to section out
vowels that may exist above or below a consonant but will
be part of the same x-axis region as the consonant.

One problem we encountered was that blurring and noise
can cause vowels to be connected to the consonants, either
above or below it. This will cause a mis-classify if we leave
it as it is. Therefore to solve this we eroded the character to
separate them.

B. Text Recognition

1) SIFT and RANSAC: SIFT feature descriptors and frames
of each font template image are calculated using the specified
peak, peak_thresh, and edge thresholds edge_thresh.
After a padding, padding and an increased scaling,scale,
is applied, the SIFT features of each extracted character from
the document image are calculated with the same peak and
edge thresholds as the font template images. The padding and
scaling helped increase the number of features detected in the
extracted character.

A match and score computation is done between this
character-to-be-identified and each template image. The
frames of the matches are then ran through RANSAC to
calculate a best-fit homography matrix and identify inlier
features between the character and template. RANSAC sets,
k, the number of matching pixels needed to compute the
homography and samples for the best homography S times.
The average score of these inlying features is taken, and the
template which achieves the lowest average inlier score is
selected as the character’s identity and match.

The user has the ability to change the values of
peak_thresh, edge_thresh, scale. The default
values for these parameters are peak_thresh =
0,edge_thresh = 50,padding = 10,scale =

3,k = 3,S = 2000.

2) SVD and PCA: Before SVD and PCA analysis can be
applied to the font template images and extracted document
characters, the images must be resized to the same matrix
dimensions. SVD is then applied to the resized templates
and extracted characters images and the normalized left or
right eigenvectors and associated eigenvalues are obtained.
The principle eigenvector, that is the eigenvector associated
with the largest magnitude eigenvalue, of each template image
is recorded and compared with the principle eigenvector of
each extracted character by calculating the dot product of
these normalized eigenvectors. The larger the dot product, the
more similar these vectors, and therefore by extensions these
characters, are to one another. Thus, the template image that
whose principle eigenvector is produces the largest dot product
with the extracted character-to-be-identified is selected as the
character’s identity and match.

By default, the method employed uses the right eigenvectors
from SVD, since no significant difference between the results
of the left and right eigenvectors were found.

3) XOR + Resize + WDS: Each extracted document char-
acter is resized to match the dimensions of the candidate
font template image. Matching the sizes allows these binary
images to be directly XOR’ed together. The resulting image
is a visualization of where the images matched, and more
importantly, where they mismatched. Matches occur if the
values in both the extracted character and the template image
are the same at corresponding pixels; in this case, the XOR
result of the pixels is 0. Mismatches occur if the values in
both the extracted character and the template image are the
different at corresponding pixels; in this case, the XOR result
of the pixels is 1.

The resulting image is given a weighted distance score
(WDS). This is computed by locating the mismatches in
the XOR’ed image, and determining how far in pixels the
mismatch was from a match. This distance value is then
raised to the power of a desired weighting penalty p and
summed to a running total that is then normalized by dividing
it by the number of pixels in the template. The resulting
value is the distance score. The idea behind this method
was to place large penalties on mismatched pixels that
were far away from a match. Interestingly, as p → ∞, the
distance score asymptotically becomes the maximum distance
of any mismatch. And when p = 0, the distance score is
the normalized count of the number of mismatches. It was
expected that the optimal p would lie between 0 and 5, but
ultimately, the best results came about by simply adding the
mismatch count, that is when p = 0



IV. RESULTS

A. Pre-processing Results

Fig. 1. Input Camera photo image

1) Locally Adaptive Thresholding:

Fig. 2. Grayscaled rank filtered image to accentuate text

Fig. 3. Output of Locally Adaptive thresholding image after AND filtered
and unfiltered grayscale image

2) Noise Removal with Region Labeling:

Fig. 4. Result after removing noise using Region Labeling

3) Hough Transform:

Fig. 5. Hough line peaks before anomaly removal (left), after anomaly
removal (right)



Fig. 6. Image after rotation

4) Sentence and Character Segmentation:

Fig. 7. Plot of cumulative sum of column pixels normalized vs. x-axis image
columns

Fig. 8. Image after text box recognition

Fig. 9. Sentence Segmentation

B. Character Identification Results

1) SIFT + RANSAC:

Fig. 10. SIFT + RANSAC match

Fig. 11. SIFT + RANSAC mismatch

2) SVD + PCA:

Fig. 12. SVD + PCA match

Fig. 13. SVD + PCA mismatch



3) XOR + Resize + WDS:

Fig. 14. XOR + Resize + WDS match

Fig. 15. XOR + Resize + WDS mismatch

Fig. 16. XOR penalty weight percentage correct classification graph

TABLE I
PERCENTAGE CORRECT CLASSIFICATION

Document Type XOR + Resize SVD + PCA SIFT + RANSAC
Clean (same font) 91% 73% 64%

Clean (different font) 80% 36% 36%
Test (same font) 95% 69% 59%

Test (different font) 83% 36% 18%

C. Result Discussion

Included here as samples of some of the matches and
mismatches produced by the three different methods we imple-
mented. It can seen that the methods can handle a noticeable
margin of differences and still produce the correct. At the same
time, due to the similarity of various Thai characters, some
mismatches are pretty close to matches. All in all, the most
method with the most favorable result is our custom XOR +
Resize + WDS comparison algorithm.

V. CONCLUSION

The methods that we have implemented in this report are
far from perfect and do have limitations to their successes in
many cases. There are many future improvements that can be
added on top of the existing pipeline to make the system more
robust.

A. Limitations

There are many limitations to our system and many cases
where our system will very likely produce bad results. These
limitations are as follows:

1) One limitation of our implementation during the
pre-processing pipeline is if there are too much noise
outside the text box, regions outside the document
page. This will cause the algorithm to find the wrong
boundaries for the text box as well as section out the
wrong regions for the sentences and characters. Some
characters may be unintentionally removed by the
region labeling step (step 2) in the pre-process pipeline.
A better and more robust system against noise in the
background outside the page documents (e.g. images
of table behind the document) would be a beneficial
addition.

2) Another limitation in the pre-processing step is if the
image of the document is warped. This means that
the page is not correctly aligned in 2D but instead is
rotated or folded in the third dimension (in and out of
the page). This will produce characters in the image
with different sizes and well as have sentences that
are not straight, but curved. With this image setup, the
image segmentation step that segments out sentences
and characters will not be able to separate the right
sentences. Parts of some sentences may be merged with
other parts of other sentences.

3) For our SIFT + RANSAC method, we notice that the
bad result was due to the lack of SIFT features and
descriptors for each characters. Each character template
contains on average around 30-40 features and do not
reach the 100 feature point. Characters detected from
the camera images have even fewer features (around
20) and so the matching features when run through
RANSAC reduces even more. With too few features, we
could not use the maximum inliers as a representation
of the best match, but needed to use the average score
of the matches instead.

4) SVD + PCA method requires large first principle
eigenvalue component compared to the other
eigenvalues. This is the case with the template
characters, with the first principle eigenvalue being
about 3 times larger than the next largest. However,
the noisy characters detected from the image did not
have this trait and had the principle eigenvalue around
1.5-1.7 times larger than the next one. This removes
many of the features that can be captured by the
principle eigenvectors for the detected characters and
produced poor results.

5) An interesting result we found with our XOR template



matching method is that it will consistently mis-classify
the same character over and over. It will on the other
hand also correctly classify the same character. Thus, the
errors resulting from this method is consistent and are
pretty robust with noise. This is different from the other
two methods where the same characters in two different
locations may be matched with two different characters.

B. Future Improvements

1) Pre-process: Pre-process could be improved to be more
robust against background noise. Also a method to fix the
perspective warp of the characters could be implemented
within the pipeline to straighten out the sentences and have the
characters be resized to the same size, for better segmentation.

2) Character detection and Classification: One big
improvement to add to our classification implementation is
to create a confidence score for each classification. Since
currently we are only noting if the classification is either
correct or incorrect, if a confidence score is incorporated,
we will be able to identify classifications that we are not
confident about and re-process these characters with better
algorithms.

With a confidence score, we can then combine the
three methods we mentioned for text/character recognition.
We would first run XOR template matching since it will
consistently correctly classify 80-90% of the characters.
Characters that are incorrectly matched will be detected using
the confidence score and then we run using the two other
methods and confidence score of the three methods combined
can be used to find the best match (i.e. the matching character
with the highest confidence out of the three methods).

One last improvement we can make to the SVD + PCA
method is to create a database of the 66 Thai characters with
many fonts. Using these templates, we can create an eigen-
image or fisher-image of each character and then classify the
characters according to these eigen/fisher-images.

REFERENCES

[1] Jin, Michelle, Ling Xiao Wang, and Boyang Zhang. Poster: Text to
Image Translation for Restaurant Menus. EE 368/CS 232, Department
of Electrical Engineering, Spring 2014.

[2] Phokharatkul, Pisit, and Chom Kimpan. ”Recognition of handprinted
Thai characters using the cavity features of character based on neural
network.”Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998
IEEE Asia-Pacific Conference on. IEEE, 1998.

[3] Hochberg, Judith, et al. ”Automatic script identification from images
using cluster-based templates.” Document Analysis and Recognition,
1995., Proceedings of the Third International Conference on. Vol. 1.
IEEE, 1995.

APPENDIX

Project Idea, Data collection, Poster, Report, SVD + PCA,
RANSAC: Nattapoom Asavareongchai, Evan Giarta

Preprocessing: Nattapoom Asavareongchai

SIFT, XOR, WDS: Evan Giarta


