Motivation

- Track a section of a plane so that a user can place an 3D object on the surface
- Useful for augmented reality applications

Background

- Track features (corners) and minimize the number of features dropped between frames
- Minimize the translational error
- Marker less- can track in any scene that \bullet has texture
- Tracks all features in the frame for more stability

Metrics

Method	Pixel Error	Retention Rate	# of Features
ORB	27.679	0.275	40
Optflow FAST	0.548	0.991	1462
Optflow Shi-			
Tomasi	0.071	0.995	205

Future Work

- Speed up computation with GPU
- Can use SLAM-based methods to create a 3D map
- Loop-closure
- Direct methods to increase speed

Experimental Results

Extract Features

Optical Flow Trajectory

Tuning parameters led to varying performance as well. More features and smaller pixel error had better tracking.

Plane Placement

Cube Projection