Effective Light Field Rendering for Thumbnails Muhammad M. Almajid and Kuy Hun Koh Yoo Energy Resources Engineering Department, Stanford University

Rendering Methods

2. Quadrilinear Interpolation

- Aliasing in texture mapping is resolved with quadrilinear
- Rendering using these techniques does not properly capture
- These methods are only effective for scenes without

Perspective Path

Thumbnail Generation

Tornado

Image Effects/Filters

Morphological Manipulations

3. Depth-corrected Interpolation

Scene depth is estimated using an occlusionaware algorithm (Wang et al., ICVV 2015) Features shift differently according to depth

Image Differences

Depth Map Estimate

Depth Consideration

Uniform

Depth Scene

Future Work

- Obtain better depth estimates using alternative algorithms
- 2. Optimize rendering algorithm to become more computationally efficient (i.e. compression and vector quantization)

References

- Levoy, M., & Hanrahan, P. (1996, August). Light field rendering. In *Proceedings* of the 23rd annual conference on Computer graphics and interactive techniques (pp. 31-42). ACM.
- Slater, M. (2000). Tutorial on Lightfield Rendering. VRST 2000.
- Dansereau, D., & Bruton, L. (2004, May). Gradient-based depth estimation from 4D light fields. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III-549). IEEE.
- Dansereau, D. G., Pizarro, O., & Williams, S. B. (2013). Decoding, calibration and rectification for lenselet-based plenoptic cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1027-1034)
- Wang, T. C., Efros, A. A., & Ramamoorthi, R. (2015). Occlusion-aware Depth Estimation Using Light-field Cameras. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3487-3495).