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Abstract—360 degree stereoscopic image capture makes
it easier to capture full scenes in a limited number of
images. Because of this quality, it is useful to utilize the
these spherical images in computer vision and virtual
reality applications such as depth estimation and 3D scene
reconstruction. Based on the principles of disparity map
generation, previously explored by a Spring 2015 EE368
project, we aim to improve 3D stereo reconstruction
by using multiple spherical views. The spherical images
are captured by two vertically displaced Ricoh Theta
cameras. Each pair of spherical images allows us to
generate a disparity map and depth information that
can be used for 3D reconstruction. Utilizing multiple
viewpoints during scene reconstruction can allow for
more robustness when creating translated views. In this
paper, we discuss our method for improving these depth
maps by utilizing multiple spherical views to improve the
3D reconstruction of scenes.
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I. INTRODUCTION

Stereoscopic image rectification is a widely studied
topic in image processing that provides the ability to
estimate 3D depth from 2D input images. Because
of this popularity, depth-based stereoscopic image
rendering and 3D reconstruction receives a great deal of
attention in areas of multimedia research, more recently
because of the potential applications in 3D television
[3][5]. Using a single pair of spherical images allows
us to perform depth estimation from one perspective.
This allows to achieve depth accuracy to a certain
degree, but if we utilize multiple viewpoints for the
same scene during 3D reconstruction, we can allow
for more robustness when creating 3D Views. Figure 1
shows the two-viewpoint (epipolar) vs. three-viewpoint
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Fig. 1. Epipolar vs. three-viewpoint geometry.

geometry for spherical cameras. The small displacement
inaccuracies that arise when using epipolar geometry can
have a large aggregate effect on disparity maps. Having
another reference camera allows for more accurate
triangulation during reconstruction, and consequently
more accurate depth and disparity estimation.. Motivated
by this fact, we aim to use multiple view points of
spherical images to improve 3D stereo reconstruction.

The remainder of this report is structured as follows.
First, we discuss previous research that allow us to build
a deeper understanding of the fundamentals behind
spherical camera capture and depth map estimation. Next
we, we describe our setup and algorithm for utilizing
multiple spherical views for scene reconstruction.
Finally, we show experimental results, discuss some of
the challenges related to 3D reconstruction of spherical
scenes, and explore potential applications in virtual
reality research and industry.

II. RELATED WORK

Understanding spherical geometry is the first step to
reconstructing depth from spherical images. Previous
work has been done to derive geometry for two and
three viewpoint configurations. The symmetric nature
of a sphere changes both the representation of pixel
locations and calculation of depth from disparity, and



thus should be considered in reconstruction [9].

Many have explored generating depth maps from
stereoscopic views. Kim et.al. succeed in generating
depth maps using the principles of spherical geometry,
and employ various smoothing and averaging functions
in order to remove noise from the generated depth
map [Kim]. While depth can be estimated using just
spherical geometry, some have shown that optical flow
is useful in disparity estimation from stereo views
[2]. Others have achieved 3D reconstruction using
omni-directional cameras, much like the Ricoh Theta
cameras utilized in this project, but rather than using
perspective views, a slanted-plane Markov model is
utilized for depth map generation [7] Additionally, while
utilizing undistorted pinhole modeled cameras, some
advocate for the use of multiple (up to hundreds) of
viewpoints for dense 3D reconstruction. Acknowledging
the lack of calibration tools for relating multiple
camera views, Seitz et. al. examine and advocate for
multiple viewpoint reconstruction algorithms. [8]. These
previous contributions guide our proposed reconstruction
algorithm, which allows us to go from optical flow
disparity calculation to noise reduction in 3D depth
reconstruction. The following section describes the our
setup and reconstruction algorithm.

III. METHODOLOGY
Camera Capture Setup

We utilize a 5-viewpoint camera capture system, with
three cameras equally spaced on a common baseline, and
two additional cameras on a vertically shifted baseline,
angled towards the scene at around 30 degrees. Each
camera location contains a pair of vertically stacked
spherical cameras, each of which can capture 185 degree
scene that can be stitched into one 360 degree spherical
view. This setup allows us to utilize two to five view-
points in depth map rectification.

Disparity Map Calculation and Depth Estimation

Motion estimation from image sources allows us to
obtain a large amount of information to support many
computer vision algorithms, from object recognition to
scene understanding. Optical flow estimation is a com-
mon structure-from-motion principle that allows us to
estimate the x and y components of motion of objects
in a two dimensional scene. [2]. Our camera capture
setup dictates that the only motion in our scene should
be vertical, and so we are able to utilize the y component

Fig. 2. Camera Capture setup.

Fig. 3. Optical flow estimations for vertically displaced frames.
The y-component (on the left) can be directly used for disparity
estimation.

of the optical flow as our disparity estimation. Typically,
disparity calculation in spherical images is is distorted
as a result of the fish-eye lenses, so we were surprised
to discover that this estimation results in a less distorted
disparity estimation, and so our depth estimation was
approximated well using the flat image disparity-to-depth
model,

Depth = fxb/d

where f is the focal length, b is the baseline length, and
d is the calculated disparity. Figure 3 shows the optical
flow estimation results for one of our test scenes, while
Figure 4 shows the original, noisy depth map.



Fig. 4. Initial depth map for reference frame.

The spherical model, however, depends on the spheri-

cal angle at the current pixel location [1],
Depth arcsin(.b sin(6)

arcsin(d)
where b is the baseline length, 0 is the corresponding
spherical angle, and d is the calculated disparity. For
our purposes, it is useful to be able to utilize the flat
model, as it can be calculated more efficiently than the
spherical model.

Depth Map Rectification and 3D reconstruction

From the generated depth maps, we choose one cam-
era location as a reference for rectification and final
reconstruction. The rectification process goes as follows:
first, maximally stable extremal regions (MSERS) are
averaged in the reference image to accentuate depth
before denoising with other viewpoints. This is useful in
preventing depth match rectification from flattening out
noisy areas that likely correspond to foreground. Then,
after matching SIFT keypoints in from the reference
image, we perform box filtering at locations of SIFT
keypoints and average corresponding patches in other
viewpoints with the reference image. Finally, areas that
remained untouched are slightly suppressed, as most of
the foreground regions are found near MSERs and SIFT
keypoints.

Challenges

We experienced various unexpected challenges during
the development of this project, mostly related to
image quality of our capture system. First, as spherical

Fig. 5. MSERs for car scene.

Fig. 6. Depth map rectified with MSERs, SIFT and additional frames.

data is typically very high resolution, we are required
to subsample images before processing. Not only
does the rough subsampling result in artifacts in the
images, but SIFT matching is less accurate as you
continue to downsample the images. As a result,
we had to balance the trade-off between accurate
detection and algorithmic speed. An additional problem
we encountered in the beginning of this project had
to do with spherical distortion. Although our final
algorithm used optical flow detection for disparity
estimation, our original disparity map algorithm utilized
a similarity accumulator technique [6] and required
post-processing before depth estimation. The optical
flow algorithm, though it does not solve all distortion
issues, resulted in better disparity estimation than the
previous technique, and so we opted to utilize it instead.
Additionally, some scenes proved more difficult to
reconstruct with the spherical camera. Optical flow
when applied to large, flat areas of uniform color are
typically difficult estimate. This fact combined with



the fish-eye camera’s tendency to round straight lines
leads to vertical camera displacement causing radial
image displacement. Those areas were largely ignored
in our reconstruction algorithm, but reasoning about
them could lead to improved reconstruction algorithms.
Lastly, camera capture conditions were a challenge.
Under fluorescent, pulse-width modulated illuminants,
Moire patterns can sometimes result, further skewing
optical flow. These challenges can be visualized in
some of the experimental results in the following section.

IV. EXPERIMENTAL RESULTS

We tested our algorithm on four scenes: A car garage,
a living room, a back yard, and a hallway. The car
garage was the most successful example, with a good
3D representation of the car and various appliances in
the garage. This can be attributed to The living room
was not as successful, due to flat surfaces, like walls
and patterned objects, like the carpet and curtain. The
yard dataset was a special case, providing many cubic
shapes and uniform lighting that provided good disparity
readings with optical flow estimation. The hallway pro-
vided the least accurate results due to barrel distortion
of the straight, long walls in the scene. The results of
our algorithm on these datasets are shown at the end of
the report.

V. FUTURE WORK

While this project did not fully succeed in believable
3D reconstruction, we believe there is area for adaptation
and refinement of his algorithm. We did not explore
any geometry based filtering algorithms, such as convex
and visual hulls around objects. We noticed that this
algorithm is more reliable a close distances and largely
staggered viewpoints, so rather than utilizing 360 degree
spherical cameras, it may be more logical to employ a
360 degree capture system for individual objects, and
render scenes as worlds composed of 3D models, as most
Virtual Reality development kits are modeled today.
Additionally, better methods could be employed in the
actual 3D reconstruction of the scene. We opted to over-
lay the image onto the inverse of the depth map on 3D
axes, however, a point cloud reconstruction would have
resulted in a much more believable scene. Additionally,
geometric estimation of image volumes based on shells
around point cloud reconstruction can result in high-
fidelity creation of realistic 3D models without the use
of CAD software.

VI. CONTRIBUTIONS

Contributions by Ifueko: Contributed to algorithmic
development, poster, image capture, coding/debugging
and final report.

Contributions by Harvey: Contributed to algorithmic
development, coding/debugging, poster and final report.

REFERENCES

[1] Arican, Zafer, and Pascal Frossard. Dense Depth Estimation from
Omnidirectional Images. No. EPFL-REPORT-138767. 2009.

[2] Baraldi, Patrizia, Enrico De Micheli, and Sergio Uras. "Motion
and Depth from Optical Flow.” Alvey Vision Conference. 1989.

[3] C. Fehn, Depth-image-based rendering (DIBR), compression,
and transmission for a new approach on 3D-TV, Proc. SPIE
5291, Stereoscopic Displays and Virtual Reality Systems XI, 93
(May 21, 2004).

[4] Kim, Hansung, and Adrian Hilton. ”3D scene reconstruction
from multiple spherical stereo pairs.” International journal of
computer vision 104.1 (2013): 94-116.

[5] L. Zhang; W. J. Tam, "Stereoscopic image generation based on
depth images for 3D TV”, Broadcasting, IEEE Transactions,
vol.51, no.2, pp.191-199, June 2005.

[6] J. Schmidt, H. Niemann, and S. Vogt, Dense disparity maps in
real-time with an application to augmented reality, in Applica-
tions of Computer Vision, 2002. (WACV 2002). Proceedings.
Sixth IEEE Workshop on, 2002, pp. 225230.

[7] Schonbein, Miriam, and Andreas Geiger. ”Omnidirectional 3d re-
construction in augmented manhattan worlds.” Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Confer-
ence on. IEEE, 2014.

[8] Seitz, Steven M., et al. ”A comparison and evaluation of multi-
view stereo reconstruction algorithms.” Computer vision and
pattern recognition, 2006 IEEE Computer Society Conference
on. Vol. 1. IEEE, 2006.

[9] Torii, Akihiko, Atsushi Imiya, and Naoya Ohnishi. "Two-and
three-view geometry for spherical cameras.” Proceedings of the
sixth workshop on omnidirectional vision, camera networks and
non-classical cameras. Citeseer (cf. p. 81). 2005.



Car Dataset

Fig. 8. Resulting optical flow estimation. The upper left corner is
Fig. 7. Initial upper car frames. the y-component, used for disparity map calculation.



Fig. 9. Individual depth views for each frame. Fig. 10. MSER regions, final depth segmentation, and before and
after reconstruction.
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