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ABSTRACT
1 MOTIVATION

Lens flare and ghosting can be prevalent
artifacts when taking pictures of a scene
with a direct bright light. Those artifacts
are usually caused by internal reflections of
the lens due to a thin anti reflective coating
and can easily ruin a beautiful picture.

This project aims at automatically remov-
ing those lens artifacts via post-processing
from a single input image to produce a re-
stored picture. We designed an algorithm
involving two steps: flare detection and re-
covery of the damaged region.

2 RELATED WORK

Previous work found in the image pro-
cessing literature around lens flare detection
and generic flares detection can be sepa-
rated in two categories: semi-automatic or
using multiple images. Some flare detection
algorithms involve either having a manual
step where the user has to select the general
area where the flare is present[l] or the
specific color of the flare. This prevents
false positive and makes the algorithm more
robust. The second kind uses multiple
pictures to detect flares. They use images
with different exposures to be able to find
the spots that saturated the sensor. Others
use multiple frames with camera motion
in between to figure out where the artifact
is[2].  Another interesting category uses
pictures with and without flash to detect
general flares.

Various methods for recovery exist[3].
They are often referenced to as inpainting
algorithms. Two major kind of inpaint-
ing are extensively documented: non-texture
inpainting - often using partial differential
equations based on different diffusion mod-
els[6][7] - and texture based methods[4]. Non
texture based techniques usually work very
well for small regions - especially when using
higher degree derivatives to preserve edges
- but have a tendency to produce blurred
patches. Texture based inpainiting works
better to fill larger holes as they copy-paste
patches to recover the image by minimizing
an error metric.

3 METHOD

Here we aim at an automated detection of
the flares using a single input image. This
involves a custom blob detection algorithm
based on a concept used in OpenCVI[5] tuned
for the specific lens flares we want to de-
tect and a hybrid inpainting method called
exemplare-based inpainting[8].

3.1 DETECTION

The chosen detection algorithm used
includes five main steps:
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Figure 1: Flare detection algorithm



Multiple Thresholding The image is
converted to grayscale and binarized using
a range of thresholds.

Contour Detection For each binary
image, we then find the contours using a
border following method|9].

Blob Merging The center of each blob is
then computed and blobs from the different
binary images are merged depending on
their distance and similarity. We finally
obtain a set of potential flare candidates.

Flare Candidates Filtering The flare
candidates are pruned using various metrics
which parameters have been tuned using a
set of images as to be robust while avoiding
false positive. Those metrics include circu-
larity of the blob, convexity, inertia and area.
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Figure 2: Impact of filtering parameters for
blob detection[5]

Flare Mask Computation Finally the
mask selecting the flares is computed for the
next step.

3.2 RECOVERY

After the flare mask has been computed
we can recover the damaged area using
exemplar-based inpainting.

After selecting a window around the flare
- to avoid searching over the whole image,
assuming good texture candidates are near
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Figure 3: Flare inpainting algorithm

the missing pixels - we execute the following
algorithm until all the pixels have been
recovered:

Identify Fill Front We first find the
contour of the region we want to fill.

Identify Priority Patches Patches on
the fill front are assigned priorities as to
privilege patches that continue strong edges
and are surrounded by high confidence
pixels.

Find Best Exemplar By priority order,
we then search the window for known
patches that minimize the error.

Fill Region using Exemplar Patch We
finally select pixels from the best patch to
fill the masked pixels in the current patch to
recover.

« Extract the manually selected initial front §Q°.
« Repeat until done:
1a. Identify the fill front 6Q°. If QF = (), exit.
1b. Compute priorities P(p) Vp € 5.
2a. Find the patch ¥y with the maximum priority,
ie.,p = argmaxpesor P(p).
2b. Find the exemplar ¥4 € ® that minimizes d(¥p, ¥yq).
2c. Copy image data from g to Uy Vp € Uy N (L.
3. Update C(p) Vp € ¥pNQ

Figure 4: Exemplar-based inpainting
steps[8]
4 RESULTS

The described method show good results.
The detection is robust and finds the flares
is the vast majority of picture from the test-



ing set. The exemplare-based technique for
recovery is also very solid and allows filling
of larger regions without blurring the image.

Figure 5: Image 1 before processing

Figure 6: Image 1 after processing

Figure 7: Image 2 before processing

The full algorithm has been implemented
in C++ and runs in less than 5 seconds on

-

Figure 8: Image 2 after processing

a Intel-core i5 processor. It has also been
ported to an arm64 platform and runs in less
than 10 seconds on an iPhone 6s.

5 DISCUSSION

Different detection algorithm have been
tried for this project. Circular detection
through Hough-transform has not been very
robust as most flares are not fully circular.
A SIFT descriptor based method has also
been tested. A set of flare descriptors
were learned from a training set and then
matched against keypoints in the target
image. Unfortunately this method was too
dependent on the training set.

The chosen blob detection method ends
up being quite robust. Some issue exist
though. The main one being false positives
in specific scene. The following figure shows
a false detection were a green traffic light in
the fog is wrongly thought to be a flare.

Restoration has also been tried using
non texture inpainting. Unfortunately the
large size of the flares makes the recovered
area quite blurry. Here you can see the
difference between a non-texture recovery
(using Navier-stokes) compared to the
exemplare-based method.

Future work on this subject include bet-
ter detection methods to prevent the false
positive issue described above as well as bet-



Figure 9: Traffic light wrongly detected as a
flare

Figure 10: Recovery using non-texture based
inpainting

ter inpainting using modern techniques. An-
other area of research would look at using
this method for other kind of flares as well
as using the mask of the detected flares to
find nearby regions containing flares.
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