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Abstract—We investigate the subsampling and reconstruction
of bandlimited images at universal sampling sets. Theoretically
such sampling sets should guarantee the reconstruction of an
image that is k-sparse in the DFT domain with only k& samples.
We find that, due to matrix conditioning issues, more than &£ sam-
ples are generally required, and we compare the reconstruction
results to those from the sparse recovery algorithms IHT and
CoSaMP. This method achieves lower MSE for a given sampling
rate but it requires knowledge of the support of the sparse image.

I. INTRODUCTION

Reconstructing signals from a limited set of subsamples
is a fundamental problem in signal processing. Sometimes
it is done for simple compression or computation purposes.
It is often easier to work with smaller, reduced data sets.
Other times, particularly in sensing applications, only a limited
number of samples is available. In this case we need to exploit
the structure of the signals in order to fill in the missing data.

In the past decade there has been an explosion of work
related to subsampling by using the methods from com-
pressed sensing. These methods assume that the signals under
consideration are sparse in some known basis and then use
iterative algorithms to find the support of the signal (in that
sparse basis) and the associated coefficients. The ‘subsamples’
for these methods are often taken with a random sensing
matrix (i.e. with i.i.d. Gaussian entries or random harmonic
frames). There are theoretical guarantees with these sensing
matrices that reconstruction will fail only with exponentially
low probability.

In contrast with the iterative methods from compressed
sensing, a purely linear approach can be taken to signal
reconstruction if the support of the sparse signal is known.
In this genie-provided-support case, the reconstruction of the
signal relies only on the invertability of the submatrices
of the sensing matrix. Recent mathematical results on the
invertability of submatrices of the DFT matrix [1],[3] suggest
that if the samples of a signal that is sparse in the DFT domain
are taken at specific indices which correspond to a universal
sampling set (USS), then perfect reconstruction should always
be possible. This is a deterministic guarantee as opposed to
the probabilistic ones from random matrices.

Motivated by these theoretical results, this project was an
experiment to see if sampling at the locations of a universal
sampling set results in a good reconstruction of a bandlimited

image (i.e., an image which is sparse in the DFT domain).
To this end, we attempt the subsampling and subsequent
reconstruction of example images with a universal sampling
set. We then compare these results against the popular sparse
reconstruction algorithms of iterative hard thresholing (IHT)
and compressive sensing matching pursuit (CoSaMP). Our
comparison focuses on what information is required to perform
the reconstructions, for what rates the reconstructions can
succeed, and the visual quality of the reconstructions.

II. BACKGROUND
A. Universal Sampling Sets

Let’s first consider one-dimensional, discrete-time signals
z[n] of length N. We will later show how this case can be
related to the two-dimensional signals which arise in the image
processing context. In order to construct universal sampling
sets for these signals, we will be concerned with the prime
factors of V. Let N = N1 N, ... N, be its prime factorization.

Suppose we have access to the samples of x[n] taken at
indices n = m; where m; € {1,2,...,N}andi=1,..., M.
Call I = {m;} the set of M distinct sampling indices. Suppose
further that x[n] is k-sparse in the DFT domain with support
corresponding to the indices .J. In other words,
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We define the matrix Ej to be the M by N submatrix of
the identity which selects out precisely the samples in I. This
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Let F' be the N by N DFT matrix. Rewriting (1) as a matrix
relationship yields
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— x = FI'ENEF'EN'Eix. (6)

Thus if E;F~'ET is invertible, we can reconstruct all of x
from the subsamples E;x. Note that EIF_1E§ is simply the



submatrix of the inverse DFT matrix with rows I and columns
J. This leads to the following definition. A sampling set [ is
a universal sampling set if EiF _1E; is invertible for any
choice J of M different frequency components.

There is a complete characterizations of what the universal
sampling sets look like if N is a prime power [1]. It is an
open problem to find such a characterization for general NV,
but there are known examples which are easy to construct.
For example, Proposition 7 from [1] shows that if the m; are
integers that are evenly spaced distance A apart (and then
taken modulo V), then I will form a universal sampling set
provided that A is coprime to the ;.

B. Vectorization

We now turn to the issue of how this framework can
be applied to two-dimensional signals such as images by
vectorization with a specific order. We need to ensure that
if an image has a k-sparse two-dimensional DFT, then once
it is vectorized we can still formulate the reconstruction as in
(6) above. Let x[n,m] be an N7 by N> image with N7, N
coprime and let N = A{N.

If 2[n,m] is vectorized in the usual lexiconographic order,
then the corresponding two-dimensional DFT matrix for oper-
ating on the vectorized image becomes the Kronecker product
Fy = Fany ® Fi, [4]. Lemma 2 from [4] shows that the
usual N by N DFT matrix Fy is the same as Fis up to
row and column permutations. The Lemma further shows that
ErFy'E} = EonFy'E} ;) Where

¢ (k) = (k mod Ny, k mod N>)

and b is a specific bijection. Because N7 and N5 are coprime,
the Chinese remainder theorem ensures that c is well-defined
and is also a bijection.

The key thing here is that if we construct a universal
sampling set I for a one-dimensional signal of size NN, then
c~Y(I) gives a corresponding set of sampling indices for the
image.

C. IHT/CoSaMP

Both IHT and CoSaMP are iterative algorithms for finding
k-sparse reconstructions of a signal x given the measurement
y = &z where ¢ is an M by N measurement system and
M < N. The problem is to find @ = B~z for an orthonormal
basis B such that ||al|o < k (i.e. a is k-sparse).

IHT works essentially by gradient descent. It makes an
estimate a which is updated iteratively by

a=Typ(a+ F"(y— Fa))

where ' = ®B and T}, truncates to the k coefficients with
highest magnitude. The F'¥ (y— Fa)) term acts as the gradient
and 7T}, enforces that the estimates are k-sparse. CoSaMP is
similar but it works by keeping an estimate I of the support
of a and then exploring which other components might be
needed based on the residue y — F'a. For a full description of
the CoSaMP algorithm see [2].
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Fig. 1: Block diagram of the subsampling procedure.
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III. METHODS

In order to test this universal sampling set framework with
real images I used the following procedure. To subsample the
images I followed the process depicted in the block diagram in
Figure 1. First, the two-dimensional DFT of the original image
was found. The DFT coefficients were thresholded to decide
what k should be and which k coefficients would provide the
best sparse approximation of the image. The locations of those
coefficients were recorded so they could later be used for the
reconstruction. Once k& was known, a universal sampling set
was constructed according to k£ and the dimensions of the
image. I used the sampling sets ¢~ 1(I) for an A7 by N5
image where I = {{A mod N} and ¢ = 1,...,k. Finally,
the subsamples of the image at the indices c¢=1(I), as well
as the support of the DFT coefficients, were provided to the
reconstruction algorithm.

The reconstruction algorithm amounts to setting up the
system of equations in (4) and solving it. To do this, vectorized
versions of z and F need to be constructed. If M = k, the
number of samples is equal to the sparsity of the image and the
system can be solved with a usual matrix inverse. If M > k,
then we have more samples than should be strictly necessary
and the system is overdetermined. This can be done to combat
poor conditioning in the submatrices and a pseudoinverse is
used to solve the system.

Subsampling for the IHT and CoSaMP trials was done with
i.i.d Gaussian sensing matrices ® with entires ~ N (0, 7). The
basis B was the vectorized inverse DFT matrix (scaled to be
unitary) so that we are considering the signal to be sparse in
the same basis across the different trials.

IV. EXPERIMENTAL RESULTS

I tested these methods on the two images in Figure 2 for
various sampling rates M /N both with and without added
noise. After resizing the images they were of dimension 85
by 127 and 149 by 81, respectively. Both of these pairs are
coprime. Throughout I used A = 32 to construct the universal
sampling sets which is coprime with all of the dimensions.
Example USS reconstructions for £k = M and k = 5M
can be seen in Figures 3 and 4, respectively. The sampling
pattern corresponding to the k = 5M universal sampling set
can be seen in Figure 5. For comparison, example CoSaMP
reconstructions when k& = 5M can be seen in Figure 6.

In Figure 3 we see that when & = M, even though there is a
theoretical guarantee that the submatrix will be invertible, the
reconstruction fails due to poor conditioning of the submatrix.
Because of this we are forced to go to higher sampling
rates and it becomes more of a question of the properties of



Fig. 2: First (top) and second (bottom) test images thanks to
EE368 HW4!

deterministic harmonic frames (in fact, this is how [3] presents
this theory).

A plot of the MSE between the original and reconstructed
images for the USS method as well as IHT/CoSaMP can be
seen in Figures 7 and 8. In Figure 7 we consider the noiseless
case and in Figure 8 some variance 10 Gaussian noise is
added. Over the range of sampling rates that were tested,
IHT either doesn’t converge or is just starting to converge.
CoSaMP, which is known to work over a wider range of
sampling rates, converges in both the noise and no-noise cases
for sampling rates greater than approximately 0.1. The USS
method gives a good reconstruction for similar rates, and
achieves a lower MSE for higher rates. This lower MSE
corresponds to improved visual quality as can be seen by
comparing Figures 4 and 6.

V. CONCLUSIONS

We have demonstrated the use of universal sampling sets in
subsampling and reconstructing images which are relatively
sparse in the DFT domain. This method achieves lower MSE
than sampling with random Gaussian matrices and iterative
reconstruction via CoSaMP or IHT, but it requires knowledge
of the support of the sparse coefficients. Unfortunately, even
though there is a theoretical guarantee that a k-sparse image
should be recoverable with k£ samples taken at the locations
given by a universal sample set, poor conditioning of the
matrices can prevent such reconstruction.
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Fig. 3: Failed USS reconstruction when k& = M. This was
using a threshold 7" = 5000 which led to k values of 337 and
355, respectively. In both images this corresponds to M /N ~
0.03.

Fig. 4: USS reconstruction when M = 5k. This was using a
threshold 7" = 5000 which led to k values of 337 and 355,
respectively. In both images this corresponds to M /N ~ 0.15.
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Fig. 5: USS sampling pattern with A = 32 when k& = 5M for |

a sampling rate of M /N = 0.15.

Fig. 6: CoSaMP reconstruction when M = 5k where k was

taken as in Figure 4. In both images this corresponds to
M/N =~ 0.15.
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Fig. 7: MSE as a function of sampling rate with no added
noise.
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Fig. 8: MSE as a function of sampling rate with added i.i.d
noise added ~ N (0, 10).
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