
• 3D TV / Free Viewpoint TV 
• Virtual Reality / Head-mounted displays 
• Augmented Reality 
• Computer Vision 
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Major objects in the scenes like the road, signs, and cars are accurate in the disparity maps. The right and left edges are not as clean as the center of the 
image due to the lack of redundant data. The CNN approach performs far better than the naïve plane-sweep approach. 

9x9 patches 
from left and 
right images 

Support region (red) created by union of horizontal 
crosses along the vertical cross. The cross length are 
determined by intensity difference and length 
constraints. This allows for context-based blurring 

Regions occluded in the 
left image (blue) are 
filled in with data from 
the right (red) 

Cross-Based Cost Aggregation Occlusion Interpolation 
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Interpolation uses the depth 
information from the right 
image corresponding to the 
disparity in the left to fill in 
holes. 
Regions where the right and 
left depth map don’t agree 
after occlusion interpolation 
are filled by the median of 
the closest good pixels in 16 
directions 
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L1 Filters 

Convolutional Neural Networks are 
interconnected layers of artificial 
neurons (perceptrons) that are 
trained to create a model for image 
classification. Each layer corresponds 
to a set of  filters which are applied 
to the output of the previous layer 
ultimately resulting in a classification 
label. Our CNN is trained to calculate 
the similarity of pixels in the stereo 
imagery at various disparities 


