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Eigenimages

n Unitary transforms
n Karhunen-Loève transform and eigenimages
n Sirovich and Kirby method
n Eigenfaces for gender recognition
n Fisher linear discriminant analysis
n Fisherimages and varying illumination
n Fisherfaces vs. eigenfaces



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 2

n To recognize complex patterns (e.g., faces), large portions of an image
(say N pixels) have to be considered

n High dimensionality of �image space� results in high computational burden for 
many recognition techniques
Example: nearest-neighbor search requires pairwise comparison with every image in a database

n Transform                is a projection on a J-dimensional linear subspace that 
greatly reduces the dimensionality of the image space 

n Idea: tailor the projection to a set of representative training images and preserve 
the salient features by using Principal Component Analysis (PCA)

  
c =W


f

Image recognition using linear projection

JxN projection matrix
with orthonormal rows.

  
Wopt = argmax

W
det WRffW

H( )( )
Autocorrelation matrix of image

Mean squared value
of projection

 J << N
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Image recognition using linear projection

1f

2f2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 

x



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 4

Image recognition using linear projection

1f

2f2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 
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Image recognition using linear projection

1f

2f2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 

x
x
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Unitary transforms

n Sort pixels f [x,y] of an image into column vector of length N
n Calculate N transform coefficients

where A is a matrix of size NxN
n The transform A is unitary, iff

n If A is real-valued, i.e., A=A*, transform is „orthonormal“

 
c = A


f

 
A−1 = A*T ≡ AH

  
Hermitian conjugate

  
!
f
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Energy conservation with unitary transforms

n For any unitary transform we obtain

n Interpretation: every unitary transform is simply a rotation of the
coordinate system (and, possibly, sign flips)

n Vector length is conserved.
n Energy (mean squared vector length) is conserved.

 
c = A


f

 
c 2 = cH c =


f H AHA


f =

f
2
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Energy distribution for unitary transforms

n Energy is conserved, but, in general, unevenly distributed among coefficients.
n Autocorrelation matrix

n Diagonal of Rcc  comprises mean squared values („energies“) of the coefficients ci

  
Rcc = E cc H⎡⎣ ⎤⎦ = E A


f ⋅

f H AH⎡⎣ ⎤⎦ = ARff AH

  
E ci

2⎡⎣ ⎤⎦ = Rcc⎡⎣ ⎤⎦i,i
= ARff AH⎡⎣ ⎤⎦i,i



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 9

Eigenmatrix of the autocorrelation matrix

Definition: eigenmatrix Φ of autocorrelation matrix Rff
l Φ is unitary
l The columns of Φ form a set of eigenvectors of Rff, i.e.,

Λ is a diagonal matrix of eigenvalues λi

l Rff is normal matrix, i.e.,                         ,
hence unitary eigenmatrix exists („spectral theorem“)

l Rff is symmetric nonnegative definite, hence

RffΦ = ΦΛ

Λ =

λ0 0

λ1
!

0 λN−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

λi ≥ 0   for all i

 
Rff

H Rff = Rff Rff
H



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 10

Karhunen-Loève transform

n Unitary transform with matrix

n Transform coefficients are pairwise uncorrelated

n Columns of Φ are ordered according to decreasing eigenvalues.
n Energy concentration property: 

l No other unitary transform packs as much energy into the first J coefficients.
l Mean squared approximation error by keeping only first J coefficients is minimized. 
l Holds for any J.

A = ΦH

Rcc = ARff A
H = ΦH RffΦ = ΦHΦΛ = Λ
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Illustration of energy concentration

1f

2f

1c

2c

Strongly correlated
samples, 
equal energies

After KLT:
uncorrelated samples, 
most of the  energy in
first coefficient

  
A = cosθ − sinθ

sinθ cosθ

⎛

⎝⎜
⎞

⎠⎟
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Basis images and eigenimages
n For any transform, the inverse transform

can be interpreted in terms of the superposition of columns of A-1 („basis
images“)

n For the KL transform, the basis images are the eigenvectors of the
autocorrelation matrix Rff and are called „eigenimages.“

n If energy concentration works well, only a limited number of eigenimages is
needed to approximate a set of images with small error. These eigenimages
span an optimal linear subspace of dimensionality J.

n Eigenimages can be used directly as rows of the projection matrix

   
!
f = A−1!c

JxN projection matrix
with orthonormal rows

  
Wopt = argmax

W
det WRffW

H( )( )
Autocorrelation matrix of image

Mean squared value
of projection
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Normalization
 


f

 

f  

Projection

 

f

Database of 
Eigenface

Coefficients

Mean Face

+ -

 
p1……

…

… …

 
!pK

Similarity 
measure 

(e.g.,          )

Class of most 
similar    

Similarity 
Matching

New Face 
Image

×
k *

Recognition
Result

Rejection

1

 W  

f   

c

 
pk

θ
   
!cT !pk*

Eigenimages for face recognition
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Computing eigenimages from a training set

n How to obtain NxN covariance matrix?
l Use training set (each column vector represents one image)
l Let be the mean image of all L+1 training images
l

Problem 1: Training set size should be

Problem 2: Finding eigenvectors of an NxN matrix.

n Can we find a small set of the most important eigenimages
from a small training set ? 

    

Define training set matrix S =
!
Γ1 − µ
"!

,
!
Γ2 − µ
"!

,
!
Γ3 − µ
"!

,…,
!
Γ L − µ

"!
( ), 

and calculate scatter matrix R =
!
Γ l − µ
"!

( )
l=1

L

∑
!
Γ l − µ
"!

( )H
= SS H

  L+1>> N
  If L < N, scatter matrix R is rank-deficient

   
!
Γ1,
!
Γ2 ,…,

!
Γ L+1

 L << N

 µ
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Sirovich and Kirby algorithm

n

n

n

Sirovich and Kirby Algorithm (for             )              
l Compute the LxL matrix SHS
l Compute L eigenvectors of SHS
l Compute eigenimages corresponding to the largest eigenvalues

as a linear combination of training images

   

Instead of eigenvectors of SS H , consider the eigenvectors of S H S, i.e.,

                                              S H Svi = λi

vi

Premultiply both sides by S
                                              SS H Svi = λiS

vi

By inspection, we find that Svi  are eigenvectors of SS H

 L << N

 
vi

L0 ≤ L

 S
vi

L. Sirovich and M. Kirby, "Low-dimensional procedure for the characterization of human faces," 
Journal of the Optical Society of America A, 4(3), pp. 519-524, 1987.

                                                 SS H S!vi = λiS
!vi
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Example: eigenfaces

n The first 8 eigenfaces obtained from a training set of 100 male and 100 female 
training images

n Can be used to generate faces by adjusting 8 coefficients.
n Can be used for face recognition by nearest-neighbor search in 8-d „face space.“ 

Mean Face

Eigenface 1 Eigenface 2 Eigenface 3 Eigenface 4

Eigenface 5 Eigenface 6 Eigenface 7 Eigenface 8



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 17

Gender recognition using eigenfaces

Female face samples

Male face samples

Nearest neighbor search in “face space”
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Fisher linear discriminant analysis

n Eigenimage method maximizes �scatter� within the linear subspace over the 
entire image set – regardless of classification task

n Fisher linear discriminant analysis (1936): maximize between-class scatter, while 
minimizing within-class scatter

  
Wopt = argmax

W
det WRW H( )( )

  

Wopt = argmax
W

det WRBW
H( )

det WRWW H( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   
RB = Ni

i=1

c

∑ µi


− µ
( ) µi


− µ
( )H

   
RW = Γ l


− µi

( ) Γ l


− µi

( )H

Γ l

 
∈Class( i)
∑

i=1

c

∑

Mean in class iSamples
in class i
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n

n Problem: within-class scatter matrix Rw at most of rank L-c, hence usually 
singular.

n Apply KLT first to reduce dimensionality of feature space to L-c (or less),
proceed with Fisher LDA in lower-dimensional space

Fisher linear discriminant analysis (cont.)

Solution: Generalized eigenvectors wi
!"!

 corresponding to the 

J  largest eigenvalues λi | i =1,2,...,J{ }, i.e.

RBwi
!"!
= λiRW wi

!"!
 ,  i =1,2,...,J
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Eigenimages vs. Fisherimages

1f

2f2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 21

Eigenimages vs. Fisherimages

1f

2f KLT2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 

The KLT preserves 
maximum energy, but
the 2 classes are no
longer distinguishable.
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Eigenimages vs. Fisherimages

2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification. 

The KLT preserves 
maximum energy, but
the 2 classes are no
longer distinguishable.

Fisher LDA separates the
classes by choosing
a better 1-d subspace.

1f

2f KLT

Fisher LDA
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Fisherimages and varying iIllumination
Differences due to varying illumination can be 
much larger than differences among faces!
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Fisherimages and varying iIllumination

n All images of same Lambertian surface with different
illumination (without shadows) lie in a 3d linear subspace

n Single point source at infinity

n Superposition of arbitrary number of point sources at infinity
still in same 3d linear subspace, due to linear superposition
of each contribution to image  

n Fisherimages can eliminate within-class scatter

surface
normal   

!n
  
!
l
light source
direction

f x, y( ) = a x, y( )
!
l T
!
n x, y( )( )L

Light source
intensity

Surface
albedo
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Fisherface trained to recognize gender

Mean image Female mean Male mean
µ! 1µ

!
2µ
!

Fisherface

Female face samples

Male face samples
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Gender recognition using 1st Fisherface

Error rate = 6.5%



Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University  -- Eigenimages 27

Gender recognition using 1st eigenface

Error rate = 19.0%
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Person identification with Fisherfaces and eigenfaces

ATT Database of Faces
40 classes
10 images per class


