Eigenimages

= Unitary transforms

s Karhunen-Loeve transform and eigenimages
= Sirovich and Kirby method

= Eigenfaces for gender recognition

s Fisher linear discriminant analysis

s Fisherimages and varying illumination

m Fisherfaces vs. eigenfaces
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Image recognition using linear projection

s To recognize complex patterns (e.g., faces), large portions of an image
(say N pixels) have to be considered

= High dimensionality of “image space” results in high computational burden for
many recognition technigues
Example: nearest-neighbor search requires pairwise comparison with every image in a database

= Transform ¢ =W} is a projection on a J-dimensional linear subspace that
greatly reduces the dimensionality of the image space J << N

= Idea: tailor the projection to a set of representative training images and preserve
the salient features by using Principal Component Analysis (PCA)

Mean squared value

W, . =ar max(det WR, W %/ of projection
I g

JXN projection matrix
with orthonormal rows. Autocorrelatlon matrix of image
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Image recognition using linear projection

2-d example: />
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Unitary transforms

= Sort pixels f [x,y] of an image into column vector ]7 of length N
= Calculate N transform coefficients

¢ = Af
where A is a matrix of size NXN

= The transform A is unitary, iff

—1 *T H
A =A"=A
o ~ /
Hermitian conjugate

m If Aisreal-valued, i.e., A=A*, transform is ,orthonormal”
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Energy conservation with unitary transforms

= For any unitary transform ¢ = Af we obtain

—

el =&"e= 7" A" a7 = |7

= Interpretation: every unitary transform is simply a rotation of the
coordinate system (and, possibly, sign flips)

s Vector length is conserved.
s Energy (mean squared vector length) is conserved.
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Energy distribution for unitary transforms

s Energy is conserved, but, in general, unevenly distributed among coefficients.
m Autocorrelation matrix

R =E|&c" |=E| Af - f"4" |= AR A"

= Diagonal of R.. comprises mean squared values (,energies®) of the coefficients c;
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Eigenmatrix of the autocorrelation matrix

Definition: eigenmatrix & of autocorrelation matrix R,

e & is unitary
e The columns of ® form a set of eigenvectors of Rﬁc, l.e.,

Rﬁ(l) = PA |+—— A is a diagonal matrix of eigenvalues 2,

. . . H _ H
® Ry is normal ma_ltnx, |.e.,_Rﬁ,Rﬁ, = Rﬁ,Rﬁ , )
hence unitary eigenmatrix exists (,,spectral theorem®)

* Ry is symmetric nonnegative definite, hence . >0 forall i
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Karhunen-Loeve transform

= Unitary transform with matrix
A=o"
s Transform coefficients are pairwise uncorrelated
R.=AR,A" =®"R P=D"PA=A

m Columns of @ are ordered according to decreasing eigenvalues.

s Energy concentration property:
e No other unitary transform packs as much energy into the first J coefficients.
e Mean squared approximation error by keeping only first J coefficients is minimized.
e Holds for any J.
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Basis images and eigenimages

s For any transform, the inverse transform
f=47'¢
can be interpreted in terms of the superposition of columns of A~ (,basis
images”)
s For the KL transform, the basis images are the eigenvectors of the
autocorrelation matrix R, and are called ,eigenimages.”

= If energy concentration works well, only a limited number of eigenimages is
needed to approximate a set of images with small error. These eigenimages
span an optimal linear subspace of dimensionality J.

= Eigenimages can be used directly as, rows of the projection \..n squared vaiue
W = argmax|det(WR W " of projectior
o W A
JXN projection matrix
with orthonormal rows Autocorrelation matrix of image

Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University -- Eigenimages 12



Eigenimages for face recognition
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Computing eigenimages from a training set

= How to obtain NxN covariance matrix?
e Use training set T',T,.....,T",, (each column vector represents one image)
o Let u bethe mean |mage of all L+1 tralnmg |mages

e Define training set matrix S = (F u,l‘ M,F -u,....T —ﬁ)

L/ _\/_  —\H
and calculate scatter matrix R = E(Fl - M)(F, - M) = SS"
=1

Problem 1: Training set size shouldbe L+1>> N
If L < N, scatter matrix R is rank-deficient
Problem 2: Finding eigenvectors of an NxN matrix.

s Can we find a small set of the most important eigenimages
from a small training set L << N ?

Digital Image Processing: Bernd Girod, © 2013-2018 Stanford University -- Eigenimages 14



Sirovich and Kirby algorithm

" |nstead of eigenvectors of SS*, consider the eigenvectors of S”S, i.e.,
S7SV =AYV,

® Premultiply both sides by S
SSYSv. =4SV,

" By inspection, we find that Sv, are eigenvectors of SS"

Sirovich and Kirby Algorithm (for L << N)
e Compute the LxL matrix S7S
e Compute L eigenvectors v, of S#S

e Compute eigenimages corresponding to the [, < [ largest eigenvalues
as a linear combination of training images Sv.

L. Sirovich and M. Kirby, "Low-dimensional procedure for the characterization of human faces,"
Journal of the Optical Society of America A, 4(3), pp. 519-524, 1987.
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Example: eigenfaces

= The first 8 eigenfaces obtained from a training set of 100 male and 100 female
training images

Eigenface 1 Eigeﬁface 2 Eigenface 3 Eigenface 4

7

Mean Face

A

Eigenface 5 Eigenface 6 igentace 7 Eigenface 8

s Can be used to generate faces by adjusting 8 coefficients.
m Can be used for face recognition by nearest-neighbor search in 8-d ,face space.”
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Gender recognition using eigenfaces

Nearest neighbor search in “face space”
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______________________________________________________________________________________________________________________________________
Fisher linear discriminant analysis

= Eigenimage method maximizes “scatter” within the linear subspace over the
entire image set — regardless of classification task

op

W = argmax(det(WRWH))
w

m Fisher linear discriminant analysis (1936): maximize between-class scatter, while
minimizing within-class scatter

(i)

B

~
Il
i [

det(WR v " /
W, =argmax _Sar:‘p'es_ Mean in class i
W det(WR IN Class 1 l

b3 3 (G- -n)

i=1 T, eClass(i)
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Fisher linear discriminant analysis (cont.)

® Solution: Generalized eigenvectors ; corresponding to the

J largest eigenvalues {)Ll. |i=1,2,...,J}, i.e.

Rw=AR w , i=12,.,J

= Problem: within-class scatter matrix R, at most of rank L-c, hence usually
singular.

= Apply KLT first to reduce dimensionality of feature space to L-c (or less),
proceed with Fisher LDA in lower-dimensional space
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Eigenimages vs. Fisherimages

2-d example: />
A . .
Goal: project samples on ® o
a 1-d subspace, then perform o O A
classification. o A
A 4,
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A &
o A
@ A
® A
© A
A A
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Eigenimages vs. Fisherimages

2-d example: /2 KLT
! @ o A
Goal: project samples on ® o o
a 1-d subspace, then perform @ Y A
classification. © ° | ﬁg&é A
A
The KLT preserves o N A a
maximum energy, but @) /@ A
the 2 classes are no A A A - /i
longer distinguishable. o 0.5 | A
&
© @,@@. R
/A A A
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Eigenimages vs. Fisherimages

2-d example:

Goal: project samples on
a 1-d subspace, then perform
classification.

The KLT preserves
maximum energy, but

the 2 classes are no
longer distinguishable.

Fisher LDA separates the
classes by choosing
a better 1-d subspace.

Fisher LDA
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Fisherimages and varying illlumination

Differences due to varying illumination can be
much larger than differences among faces!

| —
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Fisherimages and varying illlumination

= All images of same Lambertian surface with different
illumination (without shadows) lie in a 3d linear subspace

= Single point source at infinity Light source

. intensit
surface ‘;@: ’
normal Flx _ = <
o f(xa y) = Cl(x, y)(l Tﬁ(xa y))L
" light source 4
direction /
Surface
albedo

m Superposition of arbitrary number of point sources at infinity
still in same 3d linear subspace, due to linear superposition
of each contribution to image

m Fisherimages can eliminate within-class scatter
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Fisherface trained to recognize gender

Mean image Female mean  Male mean

H Hy 1,

Male face samples Fisherface
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Gender recognition using 1st Fisherface
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Gender recognition using 1st eigenface
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Person identification with Fisherfaces and eigenfaces

ldentification Rate
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