
1

Tutorial on Client-Server Communications

EE368/CS232 Digital Image Processing, Winter 2019

Introduction

In this tutorial, we will learn how to set up client-server communication for running an image
processing application on a server from an Android device. Since many image processing
algorithms require high complexity cost, running these algorithms on a mobile client with
responsive interactions is often infeasible. One remedy to this problem is to offload the work to a
high-performance server over the network.

Figure 1 An example of a client-server image processing system

As an illustrating example, suppose you would like to offload the computation of SIFT1 from an
Android device to a server in your class project. Figure 1 depicts a possible scheme for a client-
server image processing system. The user will first capture an input image using an Android client
and send the image to a server via HTTP. A PHP script on the server then invokes the server-side
application to compute SIFT on the image. After the computation is completed, the server will
send the result back to the Android device for display.

1 SIFT: Scale-invariant feature transform. For reference, see EE368 “Scale-Space Image Processing” and
“Feature-based Methods for Image Matching” lecture slides or Lowe, David G. (2004) “Distinctive
Image Features from Scale-Invariant Keypoints”.

2

We will be using the above example throughout our tutorial. The tutorial is divided into two parts.
The first part of the tutorial will focus on how to set up the server application. We will implement
a PHP script to facilitate client-server communication and build a server-side application to
compute SIFT using Matlab and VLFeat library. In the second part, we will explain how to handle
client-server communication on an Android client.

Disclaimer: This tutorial is for educational purpose only. It is intended for students who would
like to build a fast-working prototype for their class projects. Please be aware that the tutorial does
not consider practical system issues, such as security and reliability, in a real-world setting.

Part I: Server

Server Setup
This tutorial assumes you have a web server with HTTP software (Apache, IIS, etc) and PHP
installed. Otherwise, please refer to the following links on how to setup a web server:

http://www.wampserver.com/en/ (Windows)
https://www.mamp.info/en/ (Mac)
https://help.ubuntu.com/community/ApacheMySQLPHP (Linux/Ubuntu)

Download Server Source Code
Download the server source code of the tutorial from the EE368 git repository:
https://github.com/ee368/EE368-Android-Samples

Copy the directory Tutorial3/ServerCode to your web hosting directory. Example: /var/www/
or /home/<username>/public_html in Linux/Ubuntu.

VLFeat Library
In this tutorial, we will use VLFeat library (http://www.vlfeat.org) to compute SIFT of an
image on the server. VLFeat is an open-source software written in C with interface to Matlab for
ease of use and experimentation. The library implements many common computer vision
algorithms including SIFT, MSER and k-means. Some of you may find this library very useful for
your class project.

To use VLFeat, download and unpack the binary package from:
http://www.vlfeat.org/download.html

Alternatively, you can use VLFeat package (./vlfeat-0.9.14) that is already provided in the
repository.

To use and interface VLFeat with Matlab, add this line to your startup.m file:
run('<path_to_your_VLFeat_Library>/toolbox/vl_setup')

Please refer to this link for creating or modifying startup.m:
http://www.mathworks.com/help/matlab/ref/startup.html

3

Matlab Script : computeSIFT.m
Inside the tutorial files, we have already written a Matlab script, computeSIFT.m, to compute SIFT
of an image for you. It takes an input image from the upload folder and converts it to a grayscale
image with single precision:

InputImg = imread(input_img_path) ;
GrayImg = single(rgb2gray(InputImg)) ;

After obtaining a grayscale image, we simply use vl_sift from VLFeat to compute SIFT,

[f,d] = vl_sift(GrayImg) ;

• Each column of f is a SIFT keypoint with format [X; Y; S; TH], X,Y is the center of the
keypoint, S is the scale and TH is the orientation (in radians).

• Each column of d is the 128-dimensional SIFT descriptor.

After SIFT is computed, we plot the relevant keypoints using vl_plotframe on the colored image
and save the result to the output folder.

Matlab Script : computeSIFTLoop.m
Please run computeSIFTLoop.m in Matlab. You can run it without UI from the command line by
using the following command:
matlab -nodesktop -nodisplay -r "run('computeSIFTLoop.m')"

This Matlab script runs a persistent while-loop. Twice a second, it looks for the existence of an
indicator file called image_ready (generated by the PHP file that we will describe subsequently)
that signals a new query image has been uploaded to the server. If this indicator file is found, then
Matlab calls computeSIFT on the newly uploaded query image.

After computeSIFT is finished, this Matlab script saves another indicator file called
result_ready, which signals to the PHP file that the processed image has been generated. The
PHP file will wait until result_ready appears before it tries to send the processed image to the
mobile device.

Effectively, Matlab and PHP give handshakes to each other via the two indicator files
image_ready and result_ready during every new query. PHP never has to call Matlab explicitly.
Since Matlab is always running, although sleeping most of the time when a query is not present,
the 2-3 second delay of starting a new Matlab instance for every new query can also be avoided
by this approach.

PHP script : computeSIFTLoop.php
A PHP script called computeSIFTLoop.php is also included in the tutorial files. Please have a
quick look. This PHP script allows a client to upload a captured image and returns the difference-
of-Gaussian (DoG) keypoints of the image from the computation of SIFT. Below is a code snippet
from computeSIFTLoop.php for taking an input image uploaded from a client:

#declare target path for storing photo uploads on the server
$photo_upload_path = "./upload/";

4

$photo_upload_path = $photo_upload_path. basename(
$_FILES['uploadedfile']['name']);

copy temporary upload file to target path that stores the photo upload
if(copy($_FILES['uploadedfile']['tmp_name'], $photo_upload_path)) {
 #perform something on the image ….
}

On the client side, we will post an image upload to the server by connecting to the PHP script
computeSIFTLoop.php. The image file is uploaded to a temporary storage area on the server.
To save our uploaded file, we need to refer to the associative array $_FILES, which stores all the
information about the file posted. There are three elements of this array you should know for our
purpose:

• uploadedfile - the reference we will assign when we post a file from a client. We will
need this to tell the $_FILES array which file we want to process.

• $_FILES['uploadedfile']['name'] - name contains the original path of the client’s
uploaded file.

• $_FILES['uploadedfile']['tmp_name'] - tmp_name contains the path to the
temporary file that resides on the server.

After the temporary file path is known, we can copy the uploaded file to our upload folder for
processing. To invoke our Matlab script computeSIFT.m in PHP, we signal that the image is ready
to processing via an indicator file:

$handle = fopen($photo_upload_indicator_path, ‘w’);
fprintf($handle, ‘%s’, $photo_upload_path);
fclose($handle);

After the image file has been processed by Matlab, the PHP file will receive a signal via another
indicator file.

while (!file_exists($processed_photo_output_indicator_path))
{
 usleep(1000000);
}
usleep(1000000);
unlink($processed_photo_output_indicator_path);

After the Matlab script is executed, computeSIFTLoop.php needs to automatically push the result
back to the Android client. We have implemented a PHP function called streamFile (see line
#9) to do this for you easily:

streamFile($location, $filename, $mimeType)

• $location is the file path of the source file.
• $filename is the filename that the client will use to save file.
• $mimeType is the character set type. You may use ‘application/octet-stream' as

the MIME type in this example.

5

Testing Server Code
To test your server code, we provide test.html in the tutorial files. You can load test.html
using an Internet browser and upload a test image in JPEG format. In the default configuration,
you can test the script computeSIFT.php but you can change computeSIFT.php to
computeSIFTLoop.php in test.html if you want to test the latter. If your server scripts are setup
successfully, an output image with SIFT keypoints annotation will be downloaded to your browser
within a few seconds. Figure 2 shows an example of a test image and its corresponding result.

Figure 2 (Left) Input test image (Right) Output result with SIFT keypoints

When Matlab is not available
If you do not have Matlab available on your server, you can easily refer to the VLFeat library and
write your own C program for computing SIFT. Instead of invoking Matlab command, you can
replace the $command (line #58) with your binary execution command in computeSIFT.php:

$command = "<your_program_path>/<your_program_name> <arguments>”

Part II: Android Client

Download Client Source Code
The client source code is located in Tutorial3/ClientCode on the git repository.

Setting up Android Client Application
Open the project in Android Studio.

Go to SIFTExampleActivity.java and enter your server URL of the relevant PHP script
(computeSIFT.php or computeSIFTLoop.php depending if you use the version with the loop or
not) by editing line #51:

private final String SERVERURL = "http://<server-path>/computeSIFT.php";

6

Run the application on your Android device. Please make sure your phone is already connected to
the Internet. A camera preview will be displayed. Take an image snapshot by pressing the volume
up button. The image should then be automatically uploaded to your server. If everything is setup
correctly, an output image with SIFT keypoints should be displayed on the screen after a few
seconds. To take another image, you can press the same button again.

Congratulations! You have successfully built your own client-server image processing system.

Handling of Client-Sever Communication on Android Client
In the Android project, we have three main source files:

• SIFTExampleActivity.java: Main activity file. Handles UI and client-server
communication.

• ResultView.java: A surface view to draw your output image result.
• Preveiew.java: A surface view that displays camera preview. Same as what you have

seen in Tutorial #1.

Often times, it is a good programing practice to have server-client communication not interfering
with the flow of our main program thread. This helps keep our application responsive at all time.
Therefore, one solution to this problem is to have an asynchronous task to manage our server-
client communication. To implement an asynchronous task, please refer to the AsyncTask API
from the Android SDK:
https://developer.android.com/reference/android/os/AsyncTask.html. You can also
refer to SIFTExampleActivity.java, line #180 to #340, for the actual implementation in the
tutorial.

To offload our image processing to the server, we implemented a function called processImage
(see SIFTExampleActivity.java, line #277 to #299) that abstracts all handling of server-client
communication for you. Below is a code snippet of processImage:

void processImage (String inputImageFilePath){

File inputFile = new File(inputImageFilePath);
try {

 //<1> create file stream for input image
 FileInputStream fileInputStream = new FileInputStream(inputFile);

 //<2> upload photo
 final HttpURLConnection conn = uploadPhoto(fileInputStream);

 //<3> get processed photo from server
 if (conn != null){
 getResultImage(conn);
 }
 fileInputStream.close();

 }
 catch (FileNotFoundException ex){Log.e(TAG, ex.toString()); }
 catch (IOException ex){Log.e(TAG, ex.toString());
 }
}

7

In processImage, uploadPhoto (see SIFTExampleActivity.java, line #191- #257) will help
you establish a HTTP connection to your URL and upload your photo. When the HTTP connection
is successful, the server will reply your HTTP request with the result data. Using
getResultImage(conn) (see SIFTExampleActivity.java, line #260-273), we can download
and display the data. Please take a look at these functions for their implementations. You may want
to modify them for your project.

Reference

1. PHP - File Upload. http://www.tizag.com/phpT/fileupload.php
2. Post a File from the Phone to a PHP Server.

http://getablogger.blogspot.com/2008/01/android-how-to-post-file-to-php-server.html
3. VLFeat. http://www.vlfeat.org/
4. Android AsyncTask. https://developer.android.com/reference/android/os/AsyncTask.html
5. Android HttpURLConnection.

https://developer.android.com/reference/java/net/HttpURLConnection.html
6. EE368 “Scale-Space Features” and “Image Matching” lecture slides.
7. Lowe, David G. (2004) “Distinctive Image Features from Scale-Invariant Keypoints”.

