Tutorial on Basic Android Setup

EE368/CS232 Digital Image Processing, Winter 2019

Introduction

In this tutorial, we will learn how to set up the Android software development environment and
how to implement image processing operations on an Android mobile device. Android is an open-
source platform developed by Google and the Open Handset Alliance on which interesting and
powerful new applications can be quickly developed and distributed to many mobile devices.
There is a large, growing community of Android developers and a vast selection of Android
devices, which includes smartphones, tablets, and TV setup boxes. Android also comes with an
extension library of useful functions, including functions for user interfaces, image/bitmap
manipulation, and camera control that we will frequently use in EE368/CS232. We look forward
to seeing your novel image processing algorithms and applications running on Android devices as
the quarter progresses.

The tutorial is split into two parts. In the first part, we will explain how to download and install
the Android software tools onto your computer. Then, in the second part, we will explain how to
develop image processing programs that can run on an Android mobile device.

Part I: Downloading Android Studio
We will use the Android Studio IDE to design, implement, and debug Android-compatible
programs in this class.

Note: Before December 2014, the official IDE was Eclipse. Android Studio is backwards
compatible with projects created with Eclipse, but you may notice differences in the file structure
of older Android projects.

Downloading and installing Android Studio
1. Download the latest Android Studio version for your system by following the instructions

at this link:
https://developer.android.com/studio/index.html

2. Open the Android Studio application. A window will appear saying that no Android SDK
was found on your system. Click Next and leave the settings as default. Click Next again
and Finish. Android Studio will now download and install all the necessary components,
which will take a few minutes.

3. Once this is done, a window like in Figure 1 should be shown. You are now ready to use
Android Studio.

[] Welcome to Android Studio

o

L

Android Studio

1f Start a new Android Studio project

Open an existing Android Studio project
¥ Check out project from Version Control ~
¢ Import project (Eclipse ADT, Gradle, etc.)

¥’ Import an Android code sample

% Configure ~ Get Help ~

Figure 1. Initial start-up screen of Android Studio.

Part II: Developing Image Processing Programs for Android
Now that Android Studio is set up on your computer, we are ready to start writing image processing
programs that can run an Android-compatible mobile device.

Building Your First App
The official Android tutorial “Building Your First App” is a great resource for people who have

never used Android.
https://developer.android.com/training/basics/firstapp/index.html

We recommend that you go through this tutorial so that you learn how to write, build and run a
basic Android app.

If you want to know more about Android Studio, the following page is also very informative:
https://developer.android.com/studio/intro/index.html

EE368 Viewfinder Example
Now, having grasped the fundamentals of building and running an Android application, we will
create a more complicated project involving the onboard camera and real-time image processing.

1. Create a new Android project with the following parameters.
a. “Create Android project”
Application name: Viewfinder EE368
Company Domain: ee368.stanford.edu
Click Next.
b. “Target Android Devices”
Leave as default.

Click Next.

c. “Add an Activity to Mobile”
Choose “Empty Activity”.
Click Next.

d. “Configure Activity”
Activity Name: ViewfinderEE368
Uncheck “Generate Layout File”.
Leave “Backwards Compatibility” checked.
Click Finish.

2. Go to the EE368 git repository at the following URL:
https://github.com/ee368/EE368-Android-Samples

You can choose to clone it on your computer.

3. Open the file located at:
Tutoriall/ViewfinderEE368/app/src/main/java/edu/stanford/ee368/viewfind
eree368/ViewfinderEE368.java

and copy its content in the viewfinderEE368. java in the project that you just created.

4. Similarly, open the file located at:
Tutoriall/ViewfinderEE368/app/src/main/AndroidManifest.xml

and copy its content in your own AndroidManifest.xml file.

5. Run the project and select your device in the “Select Deployment Target” dialog. You
should see something like Figure 2 on your device. Point the camera at different objects
around you to see how the mean, standard deviation, and histogram of each color channel
changes dynamically. You are augmenting the viewfinder in real time!

Mean (RG:B)aNIBH0; 84 1S zZAl R
BNEERES), 70.87

Figure 2. “Viewfinder EE368” program running on an Android phone.

6. The repository contains all the files necessary to build the project, so instead of creating
the project from scratch, it is also possible to open the project from the repository (File >
Open) and you can run it directly.

Real-time Phone Debugging in Android Studio

It is actually possible to view real-time messages from the phone in Android Studio, which can be
very helpful for debugging and code development. Click on the “Logcat” button at the bottom of
your Android Studio window. This view shows a sequential list of real-time messages from the
phone. In particular, error messages in red can be very useful when trying to debug a problem.

Taking a Screenshot of the Phone
At some point, it may be useful to take a screenshot of the phone, e.g., to use as a figure in your
project report.

1. Open the “Logcat” view by clicking on the corresponding button at the bottom of your
Android Studio window.

2. Make sure your Android device is selected in the drop-down menu, as shown in Figure 3.
3. Click the camera icon (circled in red in Figure 3), and a panel like Figure 4 should pop up.

4. Finally, when you have the desired screen shown, click Save to extract the screenshot.

00 [3) Vi E368.java - ViewfinderEE368 - [~/D E368 TA 2018/android-ee368-samples/Tutorial1)
= ViewfinderEE368 app src main Jjava edu stanford ee368 viewfinderee368) (€ ViewfinderEE368 java A [xapp~ | P #* o G LE G Q
& Android - @ & | % I (© ViewfinderEE368 java
app
manifests
Java 2
edu.stanford.ee368.viewfinderee368 import ... '
© ViewfinderEE368 java :
© - DrawOnTop

appeid

package edu.stanford.ee368.viewfinderee368;

% 1: Project

V2

© - Preview public class ViewfinderfE368 extends Activity {
© ' ViewfinderEE368 28 private Preview mPreview;
res private DrawOnTop mDrawOnTop;

& Gradle Scripts

1 7: Structure

31 @verride
2 o protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

@ Captures

// Hide the window title.
getwmdow() setFlags(WindowManager. LayoutParams. FLAG_FULLSCREEN, WindowManager.LayoutParams.FLAG_FULLSCREEN);
requestWindowFeature(Window. FEATURE_NO_TITLE);

ns if
for gra missions in Android 6.0 and later)
int perm)ss)onCheck = Cnntext(nmpa :heckSelfPermssmn(context: this,
Manifest.permission. CAMERA) ;
if(permissionCheck != PackageManager.PERMISSION_GRANTED){
ActivityCompat. requestPermissions(activity: this,
new String[]{Manifest.permission.CAMERA},
requestCode: 0);

} else {
createPreview();

Logcat - L

[ASUS Nexus 7 Android 6.0.1, API 23 [| No Debuggable Processes B Verbose [. Regex | Show only selected application |&J

16:22:25.413 21773-21777/7 W/Sensors: sns_sam_app.c(6827):sns_sam_reg_algo: Registering algo service 16, err ©
21773-21779/? E/Sensors: sns_debug_main.c(565):Debug Config File missing in EFS!
501-661/7 D/WifiStateMachine: L2Connected CMD_START_SCAN source -2 126, 127 —> obsolet
501-7642/7 D/NetlinkSocketObserver: NeighborEvent{elapsedMs=15887067, 171.64.95.1, [aaaas[aaun7s] RTM_NEWNEIGH, NUD_STALE}
1328-3135/7 I/ClearcutloggerApilmpl: disconnect managed GoogleApiClient
501-611/7 I/PowerManagerService: Going to sleep due to screen timeout (uid 1000)..
591-611/7 I/PowerManagerService: Sleeping (uid 1000)..
967-967/7 I/Keyboard.Facilitator: onFinishInput()
591-611/7 V/KeyguardServiceDelegate: onScreenTurned0ff()
591-609/7 I/DisplayManagerService: Display device changed state: "Built-in Screen", OFF
185-185/7 D/SurfaceFlinger: Set power mode=d, type=0 flinger=0xb6ae4000
591-680/7 D/SurfaceControl: Excessive delay in setPowerMode(): 285ms
202-217/7 E/ANDR-PERF-LOCK: Failed to apply optimization for resource: 4 level: @
591-661/7 E/native: do suspend true
194-1084/7 D/audio_hw_primary: adev_set_parameters: enter: screen_state=off
591-627/7 W/qcom_sensors_hal: hal_acquire_resources, no active sensors!
706-706/? D/PhoneStatusBar: disable: < expand ICONSx alerts SYSTEM_INFOx back home recent clock search quick_settings >
706-706/7 D/PhoneStatusBar: di xpand ICONS alerts SYSTEM_INFO back HOMEx RECENTx clock SEARCH: quick_settings >
1 191-581/7 E/NetlinkEvent ndParam(): Parameter 'UID' not found
591-661/7 D/WifiStateMachis d CMD_START_SCAN source -2 130, 131 -> obsolete
? 1 16:23:42.830 191-581/7 E/NetlinkEvent: FindParam(): Parameter 'UID' not found

« > @

e

RBuild Variants
2]

» 2: Favorite
1210/dx3 3114 231800

P 4:Run S TODO = = 6:logcat (7, Android Profiler [& Terminal & 0:Messages 3 tventlog [E] Gradle Console

* daemon started successfully (3 minutes ago) 1:1 LF$ UTF-8 Context: <no conte w8

=

Figure 3. Location of the screen capture button.

4

[JoN

| (D Recapture | »> Rotate Frame Screenshot Nexus 7 9 Drop Shadow Screen Glare
HEH & @ @ 1,920x1,200 PNG (32-bit color) 10.83K
(MO) © ¥ @23

Viewfinder égk

OCV T1 Preview 0OCV Camera C.

Google Play Store

Figure 4. Device screen capture panel.

