
EE365, Spring 2013-14 Professor S. Lall

EE365 Homework 8

1. Dijkstra’s Algorithm. In this problem, you will write an implementation of Dijkstra’s
algorithm, and use it to find the shortest path in a social network.

Consider a weighted, directed graph with vertex set V = {1, . . . , n}, and edge set E.
We can describe such a graph using a matrix W ∈ Rn×n, where Wij is the weight of
the edge (i, j) if the graph contains the edge (i, j), and Wij = 0 otherwise (we assume
that there are no zero-weight edges).

(a) A key step in Dijkstra’s algorithm is computing the neighbors of a vertex x:

N (x) = {y | (x, y) ∈ E}.

Implement the following MATLAB function.

[Nx , WNx] = get_neighbors(x,W)

% inputs

% x : a vertex

% W : the matrix of edges weights (0 if there is no edge)

% outputs

% Nx : cell array containing the neighbors of x

% WNx : vector containing the weights

% of edges between x and its neighbors

Report the output of get_neighbors(246,W) for the matrix W defined in facebook_data.m.
The function get_neighbors is called a “successor oracle.”

(b) Implement the version of Dijkstra’s algorithm given on page 23 of the “Shortest
Paths” lecture. Use the following function header.

[dist , path] = dijkstra(neighbors , s , t)

% inputs

% neighbors : function handle [Nx,WNx] = neighbors(x)

% where Nx is a cell array of the neighbors of x

% and WNx is a vector of weights

% s : the source vertex

% t : the destination vertex

% outputs

% dist : the distance from s to t

% path : cell array containing a shortest path from s to t

% path{i} is the i-th vertex of the path

(c) The file facebook_data.m define a matrix W that describes part of the Facebook
social network. Report the shortest path between nodes s = 800 and t = 3000.
Choose five random source/destination pairs, and compute the distance from each
source to the corresponding destination. Report the maximum distance among
the five pairs.

1



Implementation hints.

• You need to figure out how to store the sets F and E, and the value function v.
Since MATLAB does not offer data structures such as priority queues and hash-
tables, you need to use arrays. This is not the most efficient approach, and is not
something you would do in most programming languages. However, it is the best
solution we have found in MATLAB.

• In order to recover the optimal path, you need to keep track of the index P(i)

that was last used to update the distance v(i). You can use P(i) (which is called
the predecessor of i), to trace the optimal path backwards from the target to the
source. However, note that your algorithm should output the vertices in a path
from s to t.

• Note that the get_neighbors function you wrote in (a) is slightly different from
the neighbors function that you must pass to dijkstra. You can address this
discrepancy using an anonymous function. If you have a function f(x, y), you can
define a function g(x) = f(x, y0) for some fixed value of y0 using the expression
g = @(x) f(x,y0). The right side of this expression is called an anonymous
function because it is not defined in a named function file.

• When searching for the state in F with minimum distance, break ties by always
selecting the state that was inserted last in the frontier. This will reduce the
number of states extracted from F before a solution is found.

2. Navigating a maze. In this problem, you will reproduce and extend the maze example
from the lecture slides. You are given a two-dimensional maze (Figure 1) as a matrix
A ∈ {0, 1}81×81, where Aij = 1 means that the position (i, j) is free, and Aij = 0 that
it is blocked. You are allowed to move horizontally or vertically between adjacent free
positions.

Figure 1: The maze along with the way-points graph.

The cost of moving horizontally is p, and the cost of moving vertically is q. Furthermore,
this maze has a special structure in that it is partitioned into smaller mazes by vertical
and horizontal lines in positions X=[20 41 60], and Y=[20 41 60] respectively. One

2



can move between smaller mazes only through some way-points, that are marked in
blue in Figure 1. The data are available in the maze.dat file. You will use Dijkstra’s
algorithm to investigate the impact of different heuristics for finding shortest paths in
this maze.

(a) Implement the function maze_succ that plays the role of the successor oracle for
the maze problem. Use the prototype [Nbors,costs]=maze_succ(x,A,h,p,q),
where

• A is an 81× 81 matrix indicating whether locations are free or blocked

• x is a vector of length 2 given the current position in the maze,

• p and q are the costs of moving horizontally and vertically, respectively

• h is a function handle that defines a heuristic.

Recall that the heuristic function affects the costs through the formula ĝij =
gij + hj − hi.

(b) Uninformed Search. Find the shortest path between s = (1, 19) and t = (81, 61).
Report the total cost of the path, the number of states extracted from the frontier
F , and the 100-th state along the optimal path, i.e., path{100}, where path{1}

is considered to be the source.

(c) Manhattan Heuristic. Define the “Manhattan heuristic” for this problem, and
implement it in the function manh(x,t,p,q). Show that it is a consistent heuristic.
Report manh(s,t,p,q).

(d) A* with Manhattan heuristic. Repeat (b) using the function manh.

(e) Finding Close Way-points. Implement the following helper function, which will
be useful later in the problem.

wpind = waypts(x,X,Y,W)

% inputs

% x : the current location

% X : locations of the horizontal lines

% Y : locations of the vertical lines

% W : a matrix with two columns;

% each row is the location of a waypoint

% outputs

% wpind : the indices of waypoints that can be accessed from x

% without going through any other waypoints

For states that are way-points. your function should simply return the index of
the way-point. Report waypts(s,X,Y,W).

(f) Waypoint Distance heuristic. Implement the following helper function.

hx = heurMap(x,t,X,Y,W,D)

% inputs

% x : the current state

% t : the target state

3



% X : the locations of the horizontal lines

% Y : the locations of the vertical lines

% W : the locations of the waypoints

% D : a matrix of estimates of the distances between way-points

% outputs

% hx : an estimate of the distance from x to t (see below)

The function should output the following number:

hD(x) = min

{
manh(x, W(i,:)) + D(i, j) + manh(W(j,:), t),

for i ∈ waypts(x), j ∈ waypts(t)

}
when waypts(x)6=waypts(t) and

hD(x) = manh(x,t)

when the sets of way-points of the states x,t are identical (x is near the goal).

(g) Way-point Manhattan Distance. There is a graph associated with the way-points
(also shown in blue in Figure 1). The data file defines the matrix W, which gives the
locations of the way-points, and the adjacency matrix G of the graph associated
with the way-points. Use this information to compute the weighted adjacency
matrix Gw of the way-points graph, where we take the Manhattan distance between
two way-points to be the weight of an edge. We have provided the following
function for your convenience.

D = allPairsSP(A)

% inputs

% A : weighted adjacency matrix

% outputs

% D : matrix of distances between vertices of A

Use this function to compute Dmanh = allPairsSP(Gw).

(h) A* with way-point Manhattan heuristic. Repeat (b) using the heuristic heurMap

with the matrix Dmanh of estimated distances.

(i) A* with actual way-point Distance. Construct the matrix of actual distances be-
tween waypoints Dtrue by running dijkstra for each adjacent pair of way-points.
Report Dtrue and repeat steps (g) and (h) using Dtrue.

Remark. The function showPath.m can be used to plot a path given in a cell array.

4



Figure 2: Goal state of the 8-Tile puzzle.

3. Convoy on a graph. You are a rich merchant, and you want to move some valuable
cargo from city s to city t. Unfortunately, the road is full of bands of thieves aiming
to steal your cargo. Your network of informants has given you an accurate map of the
routes between different cities, and the number of bandits along each road. You can
hire mercenaries to guard you on your journey You know that if the number of bandits
along any road in your itinerary is at most half the number of mercenaries guarding
your cargo, then you will not be attacked. Once you hire the mercenaries, you also
need to plan your route. Each mercenary you hire costs 10 gold coins, and you want to
find the minimum number of coins you need to spend in order to safely transport your
cargo.

(a) Explain how to modify Dijkstra’s algorithm to solve this problem.

(b) The file convoy.mat defines an instance of this problem. Report the minimum
number of coins that you need to spend to hire mercenaries, and a corresponding
path from s = 1 to t = 23.

4. The 8-tile puzzle. The 8-tile puzzle is a sliding puzzle in which 8 tiles, labeled 1, . . . , 8,
are placed in a 3×3 box. Note that there is always one empty space in the puzzle. The
rules are that you can change the the configuration of the puzzle by sliding any tile
adjacent to the empty space into the empty space. The goal is to reach the configuration
shown in Figure 2. In this problem, you will solve the 8-tile puzzle using Dijkstra
algorithm and heuristics.

(a) We can think of the 8-tile puzzle in terms of a graph. Let each configuration
of the puzzle be a vertex, and let there be an edge between two vertices if the
corresponding configurations can be reached from one another in one move. We
assume that each edge has weight one. Given a starting configuration s, we can we
can solve the 8-tile puzzle by finding a shortest path from s to the configuration t
shown in Figure 2. Give a consistent heuristic h for this problem, and prove that
your heuristic is consistent.

(b) We can represent a configuration of the puzzle using a vector of length 9; for exam-
ple, the goal configuration is x = (1, 8, 7, 2, 0, 6, 3, 4, 5). Implement the following
function.

5



[Nx , WNx] = tile8_neighbors(x,h)

% inputs

% x : a configuration of the 8-tile puzzle

% h : a heuristic

% outputs

% Nx : the neighbors of x (that is, the configurations

% that can be reached from x in one move)

% WNx : the cost of moving to each neighbor using the heuristic

(c) Solve the 8-tile puzzle from the starting state s = (7, 8, 1, 5, 4, 0, 3, 2, 6). Report
your sequence of moves, as well as the number of states that you extracted from
the frontier. Use can use the function solution8tile(path) to animate your
solution of the puzzle. This function assumes that path is a cell array, where
path{i} is the ith state in the path.

6


