
EE365, Spring 2013-14 Professor S. Lall

EE365 Homework 7

1. The squared norm of a linear function. Download an updated version of the class file
linear_function.m from the course website.

(a) Let f(x) = Ax+ b be a linear function. Show that g(x) = ‖f(x)‖2 is a quadratic
function, and express the coefficients of g in terms of the coefficients of f .

(b) Implement the function norm_squared_linear in the class linear_function.
The file linear_quadratic_extensions_data.m contains a matrix A, a vector b,
and a vector x. Evaluate ‖f(x)‖2 in two ways: first, evaluate f at x, and then
compute the squared norm of the resulting vector; second, use the function normsq

to compute g, and then evaluate g at x. Report the values of ‖f(x)‖2 that you
find.

2. Partial evaluation and expectation of a quadratic function. Download an updated ver-
sion of quadratic_function.m from the course website. Be sure to fill in all of the
functions that you implemented in homework 6.

(a) Consider a quadratic function
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Let gy(x) denote the value of f(x, y) as a function of x for a fixed value of y: that
is,

gy(x) = f(x, y).

Show that gy(x) is a quadratic function of x, and find expressions for the coeffi-
cients of gy(x) in terms of the coefficients of f(x, y).

(b) Implement the function partial_evaluation in the class quadratic_function.
The file linear_quadratic_extensions_data.m contains a matrix P, vectors x,
y, and q, and a scalar r. Evaluate f(x, y) in two ways: first, compute gy, and then
evaluate gy at x; second, evaluate f at (x, y). Report the values you find using
these two methods.

Note. The quadratic_function class is configured so that qf(y,m) computes
the partial evaluation of the quadratic function qf with the last m entries of the
argument set equal to y.

(c) Recall that the expectation of a random matrix is defined entrywise, and the
variance of a random vector x is defined to be

var(x) = E((x− E(x))(x− E(x))T ).

For a random vector x, and a constant matrix A, show that

E(xTAx) = E(x)TAE(x) + Tr(Avar(x)).
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Hint. A scalar is equal to its own trace, and the trace satisfies Tr(AB) = Tr(BA)
whenever the products AB and BA are both defined.

(d) Show that the expectation of f(x, y) over y is

h(x) = E
y

(f(x, y)) = gE(y)(x) + 1
2
Tr(Pyy var(y)).

(e) Implement the function partial_expectation in the class quadratic_function.
The file linear_quadratic_extensions_data.m contains a matrix P, vectors x

and q, a scalar r, a cell array yvals, and a vector ypmf. Each entry of yvals

is a value for the vector y, and the corresponding component of ypmf gives the
probability mass of that value. Evaluate Ey(f(x, y)) in two ways: first, compute h,
and the evaluate h at x; second, compute the expectation explicitly by computing
the weighted sum of f(x, y) over the values of y. Report the values you find using
these two methods.

Note. The quadratic_function class is configured so that Expect(qf,ybar,yvar)
computes the partial expectation of the quadratic function qf with respect to the
last length(ybar) entries of the argument, when those entries have mean ybar,
and variance yvar.

3. A special case of linear/quadratic stochastic control. Consider a linear dynamical system
with process noise:

xt+1 = f(xt, ut, wt) = Axt +But + wt.

We assume that x0, w0, w1, w2, . . . are independent, and that the mean and variance of
wt are time-invariant and known. Suppose the stage cost is a convex quadratic function
of x and u:
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We want to find a steady-state controller and value function for this system.

(a) Since this is a linear/quadratic stochastic control problem, we know that the
optimal controller is linear, and the optimal value function is quadratic. Suppose
v0(x) is any quadratic function of x. We can find the optimal controller and value
function using value iteration:

vk+1(x) = T (vk) = min
u
{g(x, u) + E

w
(vk(f(x, u, w)))}, k = 0, 1, 2, . . . .

We repeat value iteration until convergence: that is, until the controller and value
function do not change much from one iteration to the next. Write a MATLAB

function to compute the optimal steady-state controller and value function; use
the following function header.

function [val , pol] = ss_lqsc(f,g,wbar,wvar)
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Here, f is a linear_function specifying the dynamics as a linear function of
(x, u, w), g is a quadratic_function specifying the stage cost function as a
quadratic function of (x, u), and wbar and wvar are the mean and variance of
wt, respectively. We are not asking you to work through the algebra: let your
linear_function and quadratic_function classes do most of the work.

(b) Apply your ss_lqsc function to the instance of the problem defined in the file
ss_lqsc_data.m. Report the coefficients of the optimal steady-state controller,
and the quadratic and linear coefficients of the optimal steady-state value function.

4. Managing a crossbar-switch router. Consider a router with m input ports, and n output
ports. Packets arrive at the input ports, and must be sent to the output ports. In
particular, each packet arrives at a specific input port, and must be sent to a specific
output port. In each time period, the number of packets that arrive at input port i,
and must be sent to output port j is a Poisson random variable with rate parameter
λij. We assume that these random variables are all independent.

As packets arrive, they are stored in buffers at the input ports. There is a separate
buffer for each input port; packets are sorted by destination in these buffers, and each
buffer can hold at most B packets with each destination. (In other words, each input
buffer can hold B packets that must be sent to output port 1, B packets that must be
sent to output port 2, and so on. Thus, the total capacity of the buffer is nB. However,
the buffer cannot store an arbitrary collection of nB packets since it can store at most
B packets with each destination.) Packets that overflow a buffer are dropped.

After the packets have arrived, and packets that overflow a buffer have been dropped,
the router must decide what to do in the current time period. We assume that the
router is a crossbar switch, which means that, in each time period, we can connect each
input port to at most one output port, and we can connect at most one input port to
each output port. If the buffer of the input port contains at least one packet whose
destination is the output port to which the input port is connected, then one packet is
sent from the input port to the output port; otherwise, nothing happens.

We pay a penalty Cb > 0 for each packet in an input buffer at the end of a time
period, and we pay a penalty Cd > 0 for each dropped packet. We receive a reward
Cr > 0 for each packet that is successfully routed to its destination. All the param-
eters for this problem are defined in crossbar_switch_data.m. Additionally, the file
hw7_coding_tips.m contains some implementation remarks that you may find useful.

(a) Formulate the problem of managing the crossbar-switch router as a Markov deci-
sion problem. Is dynamic programming tractable for this problem?

(b) Consider the following heuristic policy. In each time period, we find the in-
put/output pair with the largest number of packets currently in the buffer (we
break ties arbitrarily). We link this input/output pair. Ignoring input and output
ports that have already been linked, we find the input/output pair with the largest
number of packets currently in the buffer, and link this input/output pair. We
repeat this procedure until either all of the input ports or all of the outputs ports
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have been linked. Simulate this policy for T time steps, and report the average
stage cost.

(c) Consider a linear/quadratic stochastic control problem with dynamics

f(x, u, w) = x− u+ w,

and stage cost
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where ρ1, ρ2, ρ3 ≥ 0 are parameters. Comment on this linear/quadratic stochastic
control problem as an approximation of the problem of managing the crossbar-
switch router. What aspects of the problem are modeled well? What approxima-
tions are made? What is the purpose of each term in the cost function?

(d) Use your function ss_lqsc to compute the optimal steady-state controller and
value function for the linear/quadratic stochastic control (LQSC) problem in 4c.
Propose a method for rounding the LQSC action to a feasible action for the actual
problem. Simulate the policy obtained by rounding the LQSC action; try different
values of the ρ parameters. Report the best average stage cost that you find, and
the values of the ρ parameters that you used.

(e) Implement approximate dynamic programming for this problem. Use the optimal
steady-state value function of the LQSC approximation as your approximate value
function. Simulate the ADP policy with different values of the ρ parameters.
Report the best average stage cost that you find, and the values of the ρ parameters
that you used.
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