EE365, Spring 2013-14 Professor S. Lall

1. The
{1,.

EE365 Homework 4

Bellman-Ford algorithm. Consider a directed, weighted graph with vertex set

..,n}. We can represent such a graph by a matrix W € R™", where W;; is the

weight of the edge (4, j) if the graph contains the edge (4, j), and W;; = oo if the graph
does not contain the edge (7, j). Suppose we want to compute a minimum-weight path
from vertex s to vertex t.

(a)

Write a MATLAB function that implements the Bellman-Ford algorithm from the
lecture slides to solve this shortest path problem. Use the following function
header.

function [p,wp] = bellman_ford(W,s,t)

Here, W is the matrix of weights that describes the directed graph, s is the given
start vertex, t is the given destination vertex, p is a sequence of vertices that form
a minimum-weight path from vertex s to vertex ¢, and wp is the minimum weight
of such a path. You may assume that there is a finite-weight path from vertex s
to vertex ¢, and that every cycle in the graph has strictly positive weight.

The file shortest_path_data.m contains a cell array W whose entries are matrices
describing directed graphs, and vectors s and t whose entries are vertex labels.
Use your bellman_ford function to solve each of these shortest-path problems;
attach a printout of the minimum weights returned by your function.

2. The forward Bellman-Ford algorithm. The version of the Bellman-Ford algorithm
covered in the lecture slides solves the minimum-weight-path problem by finding a
minimum-weight path to the destination vertex t from each of the other vertices in
the graph. It is also possible to solve this problem by computing a minimum-weight
path from the source vertex s to each of the other vertices in the graph; this is the
forward Bellman-Ford algorithm. (The lecture slides describe the reverse Bellman-Ford
algorithm.)

(a)

Give a precise description of the forward Bellman-Ford algorithm. For reference,
we consider the top part of slide 6 of the Bellman-Ford lecture slides to be a precise
description of the reverse Bellman-Ford algorithm. You may assume that there
is a finite-weight path from s to ¢, and that every cycle in the graph has strictly
positive weight.

Write a MATLAB function that implements the forward Bellman-Ford algorithm.
Use the following function header.

function [p,wp] = forward_bellman_ford(W,s,t)

Apply your function forward_bellman_ford to each of the example graphs de-
fined in shortest_path_data.m. Attach a printout of the minimum weights re-
turned by your function.



3. The weighted scheduling problem. You are given a set of n jobs, labeled 1,...,n. Job i
has an associated start time a; € R, end time b; > a;, and weight w;. The jobs you are
given may overlap, but you only have the resources to execute one job at a time. Your
task is to choose a subset S of the jobs in order to maximize the total weight

W = Zwi,

subject to the constraint that no two jobs in S overlap: i.e., (a;,b;) N (a;,b;) = 0 for
i,7 € 5,1 # j. (In particular, note that if job j starts at exactly the same time that
job i ends, then we are allowed to schedule both ¢ and j.)

(a) Formulate the weighted scheduling problem as a minimum-weight-path problem
on a directed graph.
Hint. In one possible formulation, the vertex set of the graph is 0,...,n+1, where
0 is a special “start” vertex, n + 1 is a special “end” vertex, and vertices 1,...,n
represent jobs. You must define the edges and weights of the graph.

(b) The file job_scheduling_data.m defines an instance of the weighted scheduling
problem. Use your function bellman_ford to solve the problem. Report the a
maximum-weight job schedule, and the corresponding maximum weight.

4. The knapsack problem. Suppose you have n items, labeled 1,...,n. Item ¢ has an
associated value v;, and weight w;. You have a knapsack with weight capacity . You
want to choose a subset of the items to load into the knapsack whose total weight is at
most W, and whose total value is as large as possible. You may assume that the values
v;, the weights w; and the weight capacity W are all positive integers.

(a) Formulate the knapsack problem as a minimum-weight-path problem on a directed
graph.
Hint. In one possible formulation, the vertex set of the graph is

({1,...,n+ 1} x {0,..., W} U{z),

where
e 2 is a special “end” vertex,
e cach (n+ 1,w) is a special pre-‘“end” vertex,
e and, for i = 1,...,n, the vertex (i, w) represents an item and a weight.
We have intentionally been somewhat vague about the meanings of these vertices.

You need to figure out exactly what each of these vertices represents, and define
the edges and weights of the graph.

(b) The file knapsack_data.m defines an instance of the knapsack problem. Use your
function bellman_ford to solve the problem. Report the an optimal subset of the
items, as well as the weight and value of your optimal subset.

Hint. The functions sub2ind and ind2sub are often useful for going between
index pairs (4, j) and single indices k.



