
EE365, Spring 2013-14 Professor S. Lall

EE365 Homework 3

1. Managing a data center. You are the manager of a data center offering a particular
service to customers (e.g., computing power, file retrieval, serving web pages). In this
problem we consider a very simple model with only one server.

At each time t, the server receives a number of job requests wt that is a random variable
with a Poisson distribution with parameter λ = 2. As jobs arrive, they are placed in a
buffer. Jobs can be processed in the same period that they arrive, but the buffer can
hold at most 25 jobs, and any additional jobs in the buffer at the end of a time period
are dropped.

The server has three modes of operation: slow, normal, and fast. The numbers of
jobs that can be processed in a time period for the different modes of operation are
1, 2 and 3, respectively, and the costs in dollars per time step are 1, 3.5, and 5.75,
respectively. These costs are incurred even when the buffer is empty, as one cannot
shut down the server at such times. (Note that we may end up processing fewer jobs
in a time period than we are capable of processing in that time period; for example, if
there are no jobs in the buffer, and no new jobs arrive, then we will not process any
jobs.)

At each time t, the server examines the buffer before any new jobs arrive, and decides
on the mode of operation based on xt, the number of jobs in the buffer. The policy
for choosing the mode of operation is as follows. If xt ≤ 15, operate the server in slow

mode; if 15 < xt ≤ 22, operate the server in normal mode; and if xt > 22, operate the
server in fast mode. The mode of operation at time t is denoted ut.

The data center is paid $2 for every job processed. The profit of the data center is the
amount the data center is paid for serving jobs minus the amount the data center pays
to operate the server. Initially the buffer is empty: i.e., x0 = 0.

You must compute the requested quantities exactly (i.e., not using Monte Carlo). Of
course, you may wish to check your answers using Monte Carlo (and this is highly
recommended). As always you must submit all code used in your solution.

(a) Having fixed the policy, (xt) is a Markov chain. Find the transition matrix P for
this Markov chain. Print out, and turn in round(10*P).

(b) Find a function gt(x, u, w) that gives the profit in time period t if there are x jobs
in the buffer at the beginning of the period, the server operates in mode u, and w
new jobs arrive.

(c) Simulate one trajectory of the system for t = 0, . . . , T , where T = 100. Plot x
and w as functions of time.

(d) Fix some large value of the time horizon T , and let vt be the value function at
time t: i.e., the expected profit over the time segment t, . . . , T . Plot the value
function v0(x) vs. x. You should observe that

v0 − v1 ≈ α1
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for some α ∈ R. In other words, the difference between the value functions at times
0 and 1 is approximately constant across states. Explain why this approximate
relation holds, and give an interpretation of α.

(e) What is the mean fraction of time (for large T ) that the server spends in each of
the three operating modes?

(f) What is the mean profit per time step (for large T )?

(g) Now suppose that the data center is penalized $10 for each job that is dropped.
What is the mean profit per time step (for large T ) for this modified problem?

2. Second passage time. In this problem we will consider the following Markov chain.

Note that self-loops are omitted from this figure. The transition matrix for this chain
is

P =


0.4 0.3 0 0.3 0 0
0 0.4 0 0.3 0.3 0

0.3 0 0.1 0 0.3 0.3
0.3 0 0 0.4 0 0.3
0 0.3 0.3 0.3 0.1 0
0 0 0.3 0 0.3 0.4

 .

This matrix is given in passage_time_data.m so you don’t have to type it into MATLAB.
We will compute several things about this Markov chain. Let the destination set be
the single state E = {1}, and let the initial state be i = 2. Recall that the first passage
time to the set E is

τE = min{t > 0 |xt ∈ E}

The kth passage time for a Markov chain is defined recursively as

τ
(k)
E = min{t > τ

(k−1)
E |xt ∈ E},

where τ
(1)
E = τE.
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(a) For the Markov chain above, compute and plot the distribution of the first passage
time conditioned on the initial state, i.e., compute

f(t) = Prob(τE = t |x0 = i)

as a function of t.

(b) One may calculate the distribution of the second passage time by constructing a
new Markov chain, whose first passage time is equal to the second passage time
of the original chain. What is the transition graph of this chain?

(c) For t = 1, 2, . . ., use your construction to compute the distribution of the second
passage time, which is

s(t) = Prob(τ
(2)
E = t |x0 = i).

Use your method to compute and plot this distribution also.

(d) Plot the sum of s(t) and f(t), and also plot Prob(xt ∈ E). Explain what you see.

(e) For a given state j, the recurrence time is the first passage time to the state j
given the initial condition x0 = j. This has distribution

r(t) = Prob(τ{j} = t |x0 = j).

Let j = 1. Explain how to compute this, compute it, and plot it.

(f) Show that s = f ∗ r, where ∗ denotes convolution. Verify this numerically, and
interpret this result.

(g) Give a method to compute the distribution of the kth passage time, for any k.
How does your method scale with k?

3. Class decomposition of a Markov chain. In lecture we claimed that the states of a
Markov chain can be ordered so that the probability-transition matrix has the form

P =

[
P11 P12

0 P22

]
,

where P11 is block upper triangular with irreducible blocks on the diagonal, and P22

is block diagonal with irreducible blocks. Each of the blocks on the diagonal of P11

represents a transient class, while each of the blocks on the diagonal of P22 represents
a recurrent class. In this problem you will write MATLAB code to find an ordering of the
states that puts P in this form. We will use standard graph-theory terminology through-
out the problem, so please consult Wikipedia if you encounter any unfamiliar concepts.
The file class_decomposition_data.m defines a specific probability-transition matrix
that you should use throughout this problem. However, your code must work for any
probability-transition matrix.

(a) Let G be a graph with adjacency matrix A ∈ Rn×n. We write i → j if there is
a path from node i to node j in G. We define the reachability matrix R ∈ Rn×n

such that

Rij =

{
1 i→ j,

0 otherwise.
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R = A /* A is the adjacency matrix */

repeat
for i = 1 to n do

/* iterate over all states k we know are reachable from i */

for k such that Rik = 1 do
/* iterate over all states j we know are reachable from k */

for j such that Rkj = 1 do
/* j is reachable from i through k */

Rij = 1
end

end

end

until no changes are made to Rij

Algorithm 1: Computing the reachability matrix

An algorithm for constructing R is given in algorithm 1.

Write a MATLAB function that implements algorithm 1; use the following function
header.

function R = reachable_states(A)

For reference, our implementation of reachable_states is less than twenty lines.
Hint. The function find may be useful.

(b) We write i ↔ j if i → j and j → i, and we define the communication matrix
C ∈ Rn×n such that

Cij =

{
1 i = j or i↔ j,

0 otherwise.

Explain how to construct the communication matrix from the reachability matrix.

(c) We define the transience vector t ∈ Rn such that

ti =

{
1 i is a transient state,

0 otherwise.

Explain how to construct the transience vector from the communication and reach-
ability matrices.

(d) Implement one of the algorithms given on the Wikipedia page for “topological
sorting.” use the following function header.

function L = topological_sort(A)

For reference, our implementation of topological_sort is less than twenty lines.

(e) Suppose that duplicate rows of C have been removed, and the rows have been
sorted so that the first nt rows represent the transient classes. (You need to
write code to do this; the commands unique and sort may be useful.) Note
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that there is now a unique row of C corresponding to each class. For two classes
Ci, Cj ⊆ {1, . . . , n}, we write Ci → Cj if x→ y for some x ∈ Ci and y ∈ Cj. The
adjacency matrix At ∈ Rnt×nt for the set of transient classes is defined such that

(At)ij =

{
1 Ci → Cj,

0 otherwise.

Explain how to use the reachability matrix R of the Markov chain to find the
adjacency matrix At for the set of transient classes.

(f) You should now have all the tools you need to construct an ordering of the states
that puts the probability transition matrix in the desired form. Apply your method
to the matrix in class_decomposition.data.m. Attach a plot of calling spy on
your reordered matrix (the data file generates a plot of the original matrix). For
reference, our solution has thirty-five lines (not including reachable_states and
topological_sort).

4. Markov web surfing model. A set of n web pages labeled 1, . . . , n contain (directed)
links to other pages. We define the link matrix L ∈ Rn×n as

Lij =

{
1 if page i links to page j
0 otherwise.

We define o ∈ Rn as o = L1, which gives the number of outgoing links from each page.

A very crude model of a web surfer is a Markov chain on the pages, with transitions
described as follows. The model includes a parameter θ ∈ (0, 1), which (roughly) gives
the probability that the surfer follows a link from the current page. For a page with
oi > 0 (i.e., with at least one outgoing link) the surfer moves to each of the linked-
to pages with probability θ/oi, and jumps to a page not linked to i with probability
(1− θ)/(n− oi − 1). For a page with no outgoing links (i.e., oi = 0) the surfer jumps
to a random page, chosen from a uniform distribution on (the other) pages.

We will assume that web surfer starts at a random page, uniformly distributed.

We earn a payment when the surfer follows (i.e., clicks on) a link, given by Rij ≥ 0.
This payment matrix satisfies Rij = 0 when Lij = 0 (i.e., we are not paid for random
jumps; only following links).

The following questions concern the specific instance of the problem with data given in
link_matrix_data.m.

(a) What is the most likely page the surfer is on, at time t = 10? at t = 100?

(b) Let J denote the expected total payment over t = 0, . . . , 50. Compute J three
ways:

• Monte Carlo simulation (which gives an estimate of J , not the exact value).

• Distribution propagation.

• Value iteration.
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Be sure to check that the values are consistent.

Remark. The Markov model described in this problem leads to Google’s famous PageR-
ank, which corresponds to the fraction of time spent at each site, when T →∞. (The
current version of PageRank is based on far more than just the link topology, but the
first versions really did make heavy use of the Markov surfing model.)
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