
EE365, Spring 2013-14 Professor S. Lall

EE365 Homework 2

1. Monte Carlo integration. Consider a unit circle inscribed in a square, as shown below.

x1

−1 0 +1

x2 0

+1

Each of the small circles drawn on this figure represents a random point that was
generated in the square; the red and blue circles represent points inside and outside the
unit circle, respectively. If we choose a point uniformly at random within the square,
then the probability that the point lies in the unit circle is

p =
area of the unit circle

area of the circumscribed square
.

The Monte Carlo approximation of this probability is

p̂ =
# of sample points inside the unit circle

# of sample points
.

We know that the area of the circumscribed square is 4; if we knew p, then we could
compute the area of the unit circle:

area of the unit circle = p(area of the circumscribed square) = 4p.

Replacing p with p̂ gives us a Monte Carlo estimate of the area of the unit circle.
This method can allow us to obtain good estimates for the volumes of complicated or
high-dimensional objects.
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(a) The n-dimensional unit ball is

Bn = {x ∈ Rn : ‖x‖2 ≤ 1},

where ‖x‖2 is the usual Euclidean distance. Use the Monte Carlo method to
approximate the volume of Bn for n = 1, . . . , 15. For each n, use 1,000,000 samples
to construct your Monte Carlo estimate. Plot the volume of Bn versus n.

(b) Define the ε-skin of Bn as

Sεn = {x ∈ Rn : 1− ε ≤ ‖x‖2 ≤ 1},

The fraction of Bn occupied by Sεn is

F ε
n =

vol(Sεn)

vol(Bn)
.

Use the Monte Carlo method to approximate vol(S0.1
n ) and F 0.1

n for n = 1, . . . , 15.
Plot F 0.1

n versus n. Do you find this plot surprising? The phenomenon you observe
is called sphere hardening, and has some important implications in coding theory.

2. A quick Gaussian approximation. We consider the Monte Carlo example from the
Markov chain lecture. The random variables b1, . . . , b50 are IID with

Prob(bi = 1) = 0.4, Prob(bi = 0) = 0.6.

Our goal is to find or estimate

p = Prob

(
25∑
i=1

bi ≥ 0.6
50∑
i=1

bi

)
.

The Monte Carlo simulation in the lecture notes suggests that p is around 0.14 or
0.15. In this exercise, you will compute an estimate of p using a simple Gaussian
approximation. Carry out the following steps.

(a) Explain why p = Prob(z ≤ 0), where

z = −
25∑
i=1

bi + (3/2)
50∑
i=26

bi.

(b) Find the mean µ and variance σ2 of z, and form the approximation

p ≈ p̂ = Prob(ẑ ≤ 0),

where ẑ ∼ N (µ, σ2). Give the numerical value of p̂, and check that it is consistent
with the Monte Carlo estimate of p given in the lecture.

2



Hint. In matlab, (1+erf(-mu/(sqrt(2)*sigma)))/2 gives the probability that an
N (µ, σ2) random variable is less than zero.

Remark. The Monte Carlo estimate p̂mc of p converges to p as N increases, where N is
the number of samples used in the Monte Carlo estimate. The Gaussian approximation
described in this exercise is a simple approximation that cannot be improved; its error
depends on how non-Gaussian the random variable z is.

3. Epidemic model simulation. We consider an epidemic model. A simpler version of this
model is simulated in the lecture notes, available on the class website. These lecture
notes will not be covered in class, but are there for you to read.

In this model, each individual can be in one of four states: susceptible (S), infected
(I), deceased (D), or protected (or immune) (P). An individual can transition from S
to I (they become infected), from I to D (they die), from I to S (they recover, but
without immunity), or from I to P (they recover, and now have immunity). The states
D and P are absorbing: once an individual is in either of these states, they never
leave. The transition probabilities for each individual are, with infection states ordered
(S, I,D, P ), 

0.6 0.4 0 0
0.2 0.6 0.1 0.1

0 0 1 0
0 0 0 1

 with an infected neighbor,


1 0 0 0

0.2 0.6 0.1 0.1
0 0 1 0
0 0 0 1

 with no infected neighbors.

A typical individual has four neighbors: one above, one below, one to the left and one
to the right; however, individuals on the boundary may be missing one or more of these
neighbors. Use Monte Carlo simulation to estimate the expected number of individuals
who are dead at T = 50, for a population of 100 individuals on a 10× 10 grid, starting
from each of the following initial distributions:

• Two individuals are infected, one at the (2, 2) location, and the other at the (9, 9)
location. The rest of the population is susceptible.

• Two individuals are infected as above, but there are also eight protected individ-
uals, at the following locations:

(2, 3), (3, 2), (3, 7), (4, 6), (6, 4), (7, 3), (8, 9), (9, 8).

(These individuals could be immunized, for example.) All others are susceptible.

An example script showing how to produce plots similar to those in the lecture notes
is provided on the course website. You do not need to submit any plots, but you may
find such plots interesting or useful for debugging your code.
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4. The Markov property. Let xt : Ω → X be a Markov chain, i ∈ X and A,B ⊆ X .
Determine whether each of the following statements is true or false. If a statement is
true, give a proof; if a statement is false, give a counterexample.

(a) Prob(x2 ∈ B | x1 ∈ A, x0 = i) = Prob(x2 ∈ B | x1 ∈ A)

(b) Prob(x2 ∈ B | x1 = i, x0 ∈ A) = Prob(x2 ∈ B | x1 = i)

5. Distribution propagation. Consider a Markov chain specified by the following probabil-
ity transition graph.
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(We omit the self loops; the probabilities associated with these transitions can be
inferred from the probabilities of the other transitions.) The initial distribution of the
chain is

π0 =
[
0.3 0.1 0.2 0.3 0.1

]
.

We want to compute the quantity

pT =
1

T + 1

T∑
t=0

Prob(xt = 1)

for T = 50.

(a) Use distribution propagation to compute p50 exactly.

(b) Use the Monte Carlo method to approximate p50. Generate a plot of your estimate
of p50 versus the number of sample trajectories used in the Monte Carlo method.
Report the values of your approximation with 10, 100 and 1000 samples.
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6. Markov-chain representation of a moving-average process. Let k be a positive integer,
and let w−k, w−k+1, w−k+2, . . . be independent random variables. The k-step moving
average of (wt) is the sequence (xt), where

xt =
1

k

t−1∑
τ=t−k

wτ .

(a) Is (xt) a Markov process?

(b) Consider the sequence (zt), where

zt = (xt, wt−1, . . . , wt−k+1) ∈ Rk.

i. Show that z0, w0, w1, w2, . . . are independent.

ii. Find a function f : Rk × R→ Rk such that zt+1 = f(zt, wt).

We showed in lecture that these two facts imply that (zt) is a Markov chain.
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