EE365, Spring 2013-14 Professor S. Lall

EE365 Homework 1

1. Optimal disposition of a stock. You must sell a total amount B > 0 of a stock in two
rounds. In each round you can sell any nonnegative amount of the stock; by the second
round all of the initial stock amount B must be sold. The (positive) prices in the two
rounds are py and p;, respectively. These are independent log-normal variables:

log po ~ N (1o, 05), logpr ~ N (py,0%).

The goal is to maximize the total expected revenue from the sales in the two rounds.
We consider three different information patterns.
e Prescient. You know py and p; before you decide the amounts to sell in each
period.
e No knowledge. You do not know the prices.

e Partial knowledge. You are told the price py before you decide how much to sell
in period 0, and you are told the price p; before you decide how much to sell in
period 1.

(a) Find the optimal policies for each of the three different information patterns. The
amount sold in each period can depend on the problem data (B, pq, pi1, 09, 01) and
of course the additional information available, which depends on the information
pattern.

(b) Numerical example. Consider the specific case with
le(), ,UOZO, M1 :01, Jgg = 01 =0.4.

Plot the distribution of total revenue for the stochastic control problems for the
three different information patterns, using Monte Carlo. Give the expected values
of total revenue in each case (again, computed by Monte Carlo).

Hints.

o If logz ~ N(p,0?), we have Ex = exp(u + 02/2).

e In matlab you can plot the histogram of a vector v in n bins using the command
hist(v,n).

You don’t need to know a general method for solving stochastic control problems to
solve this problem. You can solve it directly using basic and simple arguments.

2. Optimal strategy in a series of chess games. Alice and Bob have decided to play a series
of chess games. They initially play two games in which a player receives two points for
each win, one point for each draw, and no points for each loss. If one player has more
points after the first two games, then that player is declared the winner of the series; if



the players have the same number of points after the first two games, then the series
enters sudden death, and whoever is the next to win a game is declared the winner of
the series.

Alice has two distinct styles of play: aggressive and defensive. If Alice plays aggressively,
she wins with probability w4 = 0.5, loses with probability {4 = 0.4, and draws with
probability d4 = 1 — (wa +14) = 0.1; if she plays defensively, she wins, loses and draws
with probabilities wp = 0.1, [p = 0.2 and dp = 1 — (wp + Ip) = 0.7, respectively.

(a) Argue that Alice should always play aggressively if the series enter sudden death.
What is the conditional probability that Alice wins the series given the series
enters sudden death, and she always plays aggressively?

(b) Suppose Alice decides her strategy for each game of the series before the first
game. In other words, she uses an open-loop or static policy.
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If Alice plays aggressively in all of the games, what is the probability that she
wins the series?

If Alice plays defensively in the first two games, and aggressively in any
sudden-death games, what is the probability that she wins the series?

If Alice plays defensively in the first game, aggressively in the second game,
and aggressively in any sudden-death games, what is the probability that she
wins the series?

If Alice plays aggressively in the first game, defensively in the second game,
and aggressively in any sudden-death games, what is the probability that she
wins the series?

Which of these four strategies should Alice use?

(c) Now suppose Alice is willing to change her strategy as the series progresses, i.e.,
she uses recourse, making her decisions based on he current situation.
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Suppose Alice wins the first game. What is the probability that she wins
the series if she plays aggressively in the second game and any sudden-death
games? What is the probability that she wins the series if she plays defensively
in the second game, and aggressively in any sudden-death games? How should
Alice play in the second game if she wins the first game?

Suppose Alice loses the first game. What is the probability that she wins
the series if she plays aggressively in the second game and any sudden-death
games? What is the probability that she wins the series if she plays defensively
in the second game, and aggressively in any sudden-death games? How should
Alice play in the second game if she loses the first game?

Suppose the first game is a draw. What is the probability that Alice wins
the series if she plays aggressively in the second game and any sudden-death
games? What is the probability that she wins the series if she plays defensively
in the second game, and aggressively in any sudden-death games? How should
Alice play in the second game if the first game is a draw?



iv. How should Alice play in the first game? What is the probability that she
wins the series if she uses the optimal recourse policy? How does this compare
to the probability that she wins the series if she uses the optimal static policy?

3. Counting the number of policies. Consider a stochastic optimal control problem:
minimize J=E (ZtT:_Ol g1 (g, ug, wy) + gr (e, wT)) )

We assume that each state x; is an element of a finite set X', each input u; is an element
of a finite set U, and each disturbance is an element of a finite set V. For each of the
following questions, give an answer in terms of the cardinalities of these sets.

(a) An open-loop policy is just a sequence of inputs: (ug,...,ur_1). How many open-
loop policies are there?

(b) A prescient policy is a map from the set of sequences (wy, ..., wr_1) to the set of
input sequences (ug, ..., ur_1). How many prescient policies are there?

(c¢) A closed-loop policy where we do not observe w; before choosing u; is a sequence of
functions (¢y, ..., ¢r_1), where ¢, : X — U. How many such closed-loop policies
are there?

(d) A closed-loop policy where we observe w; before choosing wu; is a sequence of
functions (¢o, ..., ¢r_1), where ¢y : X x W — U. How many such closed-loop
policies are there?

4. Brute-force approach to a simple stochastic optimal control problem. Consider a simple
stochastic optimal control problem with state space X = {1, 2}, action spaced = {1, 2},
W = {1, 2}, state-transition function

fi(z,u, w) = u,

(so that x;y1 = uy), and cost functions:

—a r=u=1w=1, 0 5
T =2,
g(r,u,w) =< (t+1)? z=1,u=2, and gr(zr,w) = '
. oo otherwise.
0 otherwise,

We assume that xg = 1, T'= 4, and the w, are iid random variables with
Prob(w; =1)=p=10.3 and Prob(w; =2)=1-p=0.7.

Since this problem is so small, it is actually possible to solve using a brute-force ap-
proach. Executing the function simple_system_data defines the following variables.

e T, the time horizon T'= 4
e p, the probability p = 0.3 that w; =1

e a, the parameter a = 10 in the stage-cost function



x0, the initial state x¢o =1
xf, the final state z; = 2

ct, the vector (co, ..., cr_1) of costs associated with moving from state 1 to state
2 (that is, ct(t+1) gives the cost of moving from state 1 to state 2 at time ¢;
note that the offset, which is necessary because time starts at ¢ = 0, but MATLAB
indexing starts at 1)

U_seq, a matrix containing every possible input sequence; each column is an input
sequence

W_seq, a matrix containing every possible w; sequence; each column is a w; se-
quence

pw, a vector containing the probability of each w; sequence; pw (k) is the probability
of the sequence W_seq(:,k)

phi_cl, a cell array containing the possible closed-loop policies; in particular,
phi_cl{k} is a 3-dimensional matrix, where phi_cl{k}(x,w,t+1) gives the value
of ¢(z,w) (note that we need to add one to the time argument because time starts
at t = 0, but MATLAB indexing starts at 1); we only include the policies that send
the state to z at time T'; closed-loop policies are explained in part (c¢) below

You are welcome to look in simple_system_data if you want to see how it works, but

this

(a)

should not be necessary.

An open-loop policy is just an input sequence (u, ..., ur_1). Evaluate the cost

T-1

Z gt(l’t; Ug, wt) + gT<1?T; wt)
t=0

for every pair of input and w; sequences. Find the open-loop policy that achieves
the minimum expected cost. Report this minimum expected cost, the index of the
optimal policy in the matrix U_seq, and the optimal policy itself.

A prescient policy associates an input sequence with each w; sequence. You have
already evaluated the cost for every pair of input and w; sequences. Use this
information to find the optimal prescient policy for each w; sequence. Report the
expected cost of the optimal prescient policy.

A closed-loop policy is a sequence of functions (¢, ..., ¢7r_1), where each ¢, is
a map from state/disturbance pairs (z;,w;) to actions u;. Compute the cost of
each closed-loop policy under each w; sequence. Find the closed-loop policy that
achieves the minimum expected cost. Report this minimum expected cost, and
the index of the optimal policy in the cell array phi_cl.

Plot the probability mass function of the total cost for each of the optimal policies.
You can use the command subplot to include all of the plots on one figure.



