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Core ldea

argmin f(Azx)

A is an n x d data matrix

sketching matrix S is an m X n matrix where m < n

arg min f(SAz)

example sub-sampling S = [ Imxm  Omx(n—m) ]
sub-sampling can’t give any optimality guarantees!

Randomly generate sketching matrix S, e.g., i.i.d. random



Random projections of convex programs
Original program based on data vector y € R™ and data matrix
A € R™x4;

z* = argmin || Az — y||3
TEC e ——
f@)

where C is a convex set in R9.
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Random projections of convex programs

Original program based on data vector y € R™ and data matrix
A € Rx4:

z* = argmin || Az — y||3
TEC e ——
f=)

where C is a convex set in R9.

Given a sketching matrix S € R™*"™ consider the smaller version

Z = argmin ||S Az — Sy||2
zeC

Question:
How small can m be for a §-approximation of the cost?

f(z7) < f(x) < (1407 f(z)
— —~— ——
Optimal value  Sketched value  Approx. factor



Example: Unconstrained least squares

Original problem based on data (y, A) € R" x R"*4:

@" = arg min | Az - vll3
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Example: Unconstrained least squares

Sketched data (Sy, SA) € R™ x R™*4:

% = arg min [|SAz — Sy|3

Known results (Sarlés, 2006) : Let S be a Gaussian random matrix

® Take m 2 J%d, then T is d-optimal.

e.g., 0 = 0.5 and m = 4d.



Empirical performance for unconstrained LS

Unconstrained Least Squares : d =500
704
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Sketch size m = 2 a rank(A)



Example: Support vector machines

e given labeled pairs (b;,2;) € R? x {—1,+1}, find linear classifier
via

n

1

= in ) Lw, b, 2 +5llwl3

w argur)lglgi 2 (w,b;, 2;) 2||w||2
Hinge loss? = max{0, 1 — z;(w, b;)}?



Example: Support vector machines

given labeled pairs (b;, z;) € R? x {—1,+1}, find linear classifier
via

n

1
w* = i Uw, b;, 2 += ;
argurjréu}i ; 1 (w, bi, z;) 2||w||2

Hinge loss? = max{0, 1 — z;(w, b;)}?

Dual problem: A = [by, ..., b,]diag(z)

LN . Azl2
vi=ag mib [ Az|l5



How to generalize to arbitrary functions ?

Consider minimizing a convex objective, where A € R"*? is a data
matrix
z* = argmin g(Ax)
zeC

and C is a convex set



Introducing Newton Sketch

® Newton’s Method

' = argmi
S

n (VS 7 -2+ IV - 2l



Introducing Newton Sketch
® Newton’s Method

it = argmem (Vf(h), o — ') + %||V2f($t)1/2(x —a")|3

Definition (Newton Sketch)

1
o =argmin (Vf(a"), z — ) + SISV f(2") 2 (w = a")]3

converges for self-concordant functions



Application : Linear Programming
Consider the following LP in standard form where A € R"*¢

min {c, z)

The standard practice: interior-point methods using log-barrier

n
minc’z — p Z log(b; — al'x)
i=1

f(@)
Hessian of f(x)

V2f(z) = AT diag (1) A

(b — al x)?

takes O(nd?) operations to compute exactly.



Application : Linear Programming
® Hessian of f(z) =Tz — Y1 log(b; — al'z)

V2f(z) = Al diag (IT)Q) A,

(b —aj x
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® Root of the Hessian
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(VQf(l'))l/Z = diag <W5> A,



Application : Linear Programming
® Hessian of f(z) =Tz — Y1 log(b; — al'z)

) 1
V2f(z) = Al diag (W) A,

® Root of the Hessian

. 1
(VQf(l'))l/Z = diag <W5> A,

e Sketch of the Hessian

SUV2f(x)/? = Stdiag () A
|bi — a; x|

takes O(md?) operations



— Exact Newton
——Newton Sketch

Trial 1 Trial 2 Trial 3
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) sketch size m = d

— Exact Newton
——Newton Sketch

Trial 1 Trial 2 Trial 3

LA B

(b) sketch size m = 4d



Log-Optimality Gap

Linear Programming
optimality gap vs CPU-time
(n=10000, d=100)
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