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Nonconvex problems

ee364 (more or less correct) view:

e convex IS easy

e nonconvex is hard(er)
we will use convex optimization to

e find bounds on optimal value by relaxation

e get “good enough” feasible points by randomization
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Basic problem: QCQPs

minimize z? Agz + b = + ¢

subject to ol Az + b;-rx +c¢; <0, 1=1,...

o if all A; are PSD, convex problem, use ee364

e here, we suppose at least one A; is not PSD
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Example: Boolean Least Squares

Boolean least-squares problem is to

minimize || Az — b||5 subject to =1, i=1,...

e basic problem in digital communications (noisy channel)
e could check all 2™ possible values of x . . .
e an NP-hard problem, and very hard in practice

e many heuristics for approximate solution
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Example: Partitioning Problem
two-way partitioning problem (§5.1.5 in [BV04]):

minimize 2! Wx

subject to x?zl, 1=1,...,n

e feasible z € {—1,1} corresponds to partitioning

o coefficients W;; interpreted as the cost of having the elements ¢ and j
in the same partition.

e the objective is to find the partition with least total cost

e classic particular instance: MAXCUT (W;; > 0)
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Example: cardinality problems

minimize card(x)

subject to x € C
introduce z; € {0,1}, i.e. z;(1 — 2z;) =0,

minimize 172

subject to z; — 27 =0, 2;(1 —2) =0 i=1,..

x €C
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Semidefinite relaxation

original QCQP

minimize z’ Aoz + b = + ¢

subject to 1 A;x + b?x +c¢ <0, 2=1,...,m.
Is equivalent to

minimize Tr(A40X) + bz + co
subject to Tr(A4;X) +blz+¢ <0, i=1,...,m
X =axzt

change X = z2! into X > za!
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Lagrangian relaxation
original QCQP

minimize z? Agz + b x + ¢

subject to ! A,x + b;-r.r +c¢ <0, 1=1,...,m.
forming Lagrangian
™m ™m T
L(ZIZ, )\) = .CL'T (AO + Z )\’LA’L)'T -+ (bo -+ Z )\sz> T + Co + )\TC
i=1 i=1
recall that

r—1q"Plq ifP>0, q€R(P)

inf{z! Px + ¢'z+r} = _
x —00 otherwise
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Lagrangian relaxation: dual

L(il?; )\) — ajT (AO + i )\ZAZ)Qf + (bO + i )\sz) T:E oot )\TC
=1 i=1
has (for B = [by ---by,]|T € R™*™)

g(A) = irxlfL(:c, A)

1 T
— —(bo + BTA)T (AO +3° )\Z-A@) (bo + BTA) + AT+ ¢q
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Lagrangian relaxation: dual

Taking Schur complements gives dual problem

1
maximize 17 + A + ¢

(Ao + 3221 Xidi)  (bo+BTA)] o
(bo + BTA)T — -

A=0

subject to

semidefinite program in variable A € R"" and can be solved “efficiently”
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Lagrangian relaxation: Bidual

Taking dual again gives SDP

minimize Tr(A40X) + bl x + co

subject to Tr(A4;X) +blox+¢ <0, i=1,...

1 xt
[x X]m

in variables X € S, x € R"

e have recovered original SDP relaxation “automatically”

e convexification of original problem!
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Example: Partitioning

minimize ! Wz
subject to xf =1, +=1,....n

no need to maintain variable z, gives relaxation (via X = zx1)

minimize Tr(W X)
subject to X »~ 0, diag(X)=1
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Feasible points?

e have lower bounds on optimal value of problem
e big question: how do we compute good feasible points?

e can we measure if our lower bound is suboptimal?

EE364b, Stanford University

12



Simplest idea: randomization

original problem

minimize z? Aoz + b = + ¢

subject to ! A;x + b;-rx +c¢ <0, 1=1,...,m.
and relaxation

minimize Tr(A¢X) + bz + co
subject to Tr(A4;X) +blez+¢<0, i=1,...,m

X—xthO

o if X,z solve relaxed problem, then X — zz? > 0 can be a covariance
matrix.

EE364b, Stanford University 13



Gaussian randomization
2

e pick z as a Gaussian variable with z ~ N (z, X — xx

e z will solve the QCQP “on average” over this distribution

In other words:

minimize E[z! Aoz + b} 2 + 7o)

subject to E[z7 A;z + bl 2 +¢] <0, i=1,...,m

a good feasible point obtained by sampling enough z (often more
sophisticated strategies)
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Gaussian randomization

e possible to get sharper guarantees and exactly feasible points, e.g. for
MAXCUT or other boolean problems

e constraint

2 _
x; =1

so just take z; = sign(z;)
e for & = sign(z;), z; ~ N (0, X), have

2
E[2;2;] = ;arcsin(Xij)
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Approximation guarantees

MAXCUT relaxation

maximize Tr(W X)
subject to diag(X)=1,X =0

gives

E[zTWi] = 2 E[W arcsin(X))

T

e draw a few samples z, get at least that good with high probability

e optimal value of MAXCUT is between 2 Tr(W arcsin(X)) and
Tr(WX).
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Better rounding (Goemans & Williamson)
suppose W;; > 0, maximize

ZWij(l — X;;) subject to diag(X)=1, X >0
]

e sample coordinates &; at random, get Tr(W) — E[21 W 2] = Tr(W), at
least 50% optimal

e sample directions:
X =vlv; with || =1

i.e. X = VIV by Cholesky

e draw Z uniformly at random on unit sphere, set
&; = sign(Z1v;)

EE364b, Stanford University 17



Better rounding (Goemans & Williamson)

expected value of cut is

EW,;;(1 —2;2;)] = 2W,; Pr(Z separates v;, v,)
= 2W;; Pr(sign(v} Z) # sign(vaZ))

20(v;, v
= %Ww cos_l(vinUj)
SO N 5 y
D EWy(1 - didy)] =~ Wijcos™(X)
1 (¥}

e Fact: cos™'(t) > Za(1 — t), o = .87856
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Better rounding: final bound

e expected weight from random cut generated by optimal X is at least

2
ZN WiicosTHX ) > W,.(1 — X,;) = aSDP*.
ﬂ-izj 5 COS ( J)—O‘izj J( J) e}

e alternatives: if W = 0, then (Nesterov 98)
Tr(W arcsin(X)) > Tr(W X)

so (using earlier bound)

2
SDP* > OPT > —SDP”
™
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Example: boolean least squares

e (randomly chosen) parameters A € R**?*1%9 ¢ R

o 2 € R, so feasible set has 2190 =~ 1039 points

LS approximate solution: minimize ||Ax — b|| s.t. ||x\|§ < n, then round
yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

e best of 20 samples: 3.1% over SDP bound
e best of 1000 samples: 2.6% over SDP bound
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LS solution

SDP bound
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Example: partitioning problem

minimize ' Wz
subject to xf =1, +=1,....n
with SDP relaxation

minimize Tr(W X)
subject to diag(X)=1,X =0

and solution X°Pt

e generate samples (") ~ N(0, X°Pt), 2(1) = sign(z())

e take one with lowest cost (SDP°P' is —1641)
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Histogram of partitions
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Objective progress in partitioning
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