
Relaxations and Randomized Methods for Nonconvex

QCQPs

Alexandre d’Aspremont, Stephen Boyd
EE392o, Stanford University

Autumn, 2003

1 Introduction

While some special classes of nonconvex problems can be efficiently solved, most nonconvex
problems are very difficult to solve (at least, globally). In this set of notes we show how
convex optimization can be used to find bounds on the optimal value of a hard problem,
and can also be used to find good (but not necessarily optimal) feasible points. We first
focus on Lagrangian relaxations, i.e., using weak duality and the convexity of duals to get
bounds on the optimal value of nonconvex problems. In a second section, we show how
randomization techniques provide near optimal feasible points with, in some cases, bounds
on their suboptimality.

1.1 Nonconvex QCQPs

In this note, we will focus on a specific class of problems: nonconvex quadratically constrained
quadratic programs, or nonconvex QCQP (see also §4.4 in [BV03]). We will see that the
range of problems that can be formulated as nonconvex QCQP is vast, and we will focus on
some specific examples throughout the notes. We write a nonconvex QCQP as:

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m,

(1)

with variable x ∈ Rn, and parameters Pi ∈ Sn, qi ∈ Rn, and ri ∈ R. In the case where all
the matrices Pi are positive semidefinite, the problem is convex and can be solved efficiently.
Here we will focus on the case where at least one of the Pi is not positive semidefinite. Note
that the formulation above implicitly includes problems with equality constraints, which are
equivalent to two opposing inequalities.

The nonconvex QCQP is NP-hard: it is at least as hard as a large number of other
problems that also seem to be hard. While no one has proved that these problems really are
hard, it is widely suspected that they are, and as a practical matter, all known algorithms
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to solve them have a complexity that grows exponentially with problem dimensions. So it’s
reasonable to consider them hard to solve (globally).

1.2 Examples and applications

We list here some examples of nonconvex QCQPs.

1.2.1 Boolean least squares

The problem is:
minimize ‖Ax− b‖2

subject to xi ∈ {−1, 1}, i = 1, . . . , n,
(2)

in the variable x ∈ Rn. This is a basic problem in digital communications (maximum
likelihood estimation for digital signals). A brute force solution is to check all 2n possible
values of x. The problem can be expressed as a nonconvex QCQP:

minimize xTATAx− 2bTAx+ bT b
subject to x2

i − 1 = 0, i = 1, . . . , n.
(3)

1.2.2 Minimum cardinality problems

The problem is to find a minimum cardinality solution to a set of linear inequalities:

minimize Card(x)
subject to Ax � b,

(4)

in the variable x ∈ Rn, with Card(x) the cardinality of the set {i | xi 6= 0}. We assume
that the feasible set Ax � b is included in the ℓ∞ ball centered at zero with radius R > 0.
We reformulate this problem as:

minimize 1Tv
subject to Ax � b

−Rv � x � Rv
v ∈ {0, 1}n,

(5)

in the variables x, v ∈ Rn, and we then turn this into a nonconvex QCQP by replacing the
constraints vi ∈ {0, 1} by v2i − vi = 0. The problem then becomes:

minimize 1Tv
subject to Ax � b

−Rv � x � Rv
v2i − vi = 0, i = 1, . . . , n.

(6)

This problem has many applications in engineering and finance, including for example low-
order controller design and portfolio optimization with fixed transaction costs.
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1.2.3 Partitioning problems

We consider here the two-way partitioning problem described in §5.1.4 and exercise 5.39 of
[BV03]:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(7)

with variable x ∈ Rn, where W ∈ Sn. This problem is directly a nonconvex QCQP of the
form (1). A feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1},

and the matrix coefficient Wij can be interpreted as the cost of having the elements i and j
in the same partition, with −Wij the cost of having i and j in different partitions. The
objective in (7) is the total cost, over all pairs of elements, and problem (7) seeks to find the
partition with least total cost.

1.2.4 MAXCUT

On a n node graph G, we define nonnegative weights aij associated with each arc (i, j),
where aij = 0 if no arc connects node i and j. The MAXCUT problem seeks to find a cut of
the graph with the largest possible weight, i.e. a partition of the set of nodes in two parts
G1, G2 such that the total weight of all arcs linking these parts is maximized. MAXCUT is
a classic problem in network optimization and a particular case of the partitioning problem
above. The weight of a particular cut xi is computed as

1

2

∑

{i | xixj=−1}

aij

which is also equal to
1

4

n
∑

i,j=1

aij(1− xixj),

hence we let W ∈ Sn be a matrix defined by Wij = −aij if i 6= j and Wii =
∑

j=1,...,n aij.
Note that the matrix W is here positive semidefinite. The problem is then formulated as:

maximize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(8)

with variable x ∈ Rn. Thus, MAXCUT is a special case of the partitioning problem.

1.2.5 Polynomial problems

A polynomial problem seeks to minimize a polynomial over a set defined by polynomial
inequalities:

minimize p0(x)
subject to pi(x) ≤ 0, i = 1, . . . ,m.
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While seemingly much more general than simple nonconvex QCQPs, all polynomial problems
can be turned into nonconvex QCQPs. Let us briefly detail how. First, we notice that we
can reduce the maximum degree of an equation by adding variables. For example, we can
turn the constraint

y2n + (. . .) ≤ 0

into
un + (. . .) ≤ 0, u = y2.

We have reduced the maximum degree of the original inequality by introducing a new variable
and a quadratic equality constraint. We can also get rid of product terms; this time

xyz + (. . .) ≤ 0

becomes
ux+ (. . .) ≤ 0, u = yz.

Here, we have replaced a product of three variables by a product of two variables (quadratic)
plus an additional quadratic equality constraint. By applying these transformations itera-
tively, we can transform the original polynomials into quadratic objective and constraints,
thus turning the original polynomial problem into a nonconvex QCQP, with additional vari-
ables.

Example. Let’s work out a specific example. Suppose that we want to solve the
following polynomial problem:

minimize x3 − 2xyz + y + 2
subject to x2 + y2 + z2 − 1 = 0,

in the variables x, y, z ∈ R. We introduce two new variables u, v ∈ R with

u = x2, v = yz.

The problem then becomes:

minimize xu− 2xv + y + 2
subject to x2 + y2 + z2 − 1 = 0

u− x2 = 0
v − yz = 0,

which is a nonconvex QCQP of the form (1), in the variables x, y, z, u, v ∈ R.

2 Convex relaxations

In this section, we begin by describing some direct relaxations of (1) using semidefinite
programming (cf. [VB96] or [BV97]). We then detail how Lagrangian duality can be used as
an “automatic” procedure to get lower bounds on the optimal value of the nonconvex QCQP
described in (1). Note that both techniques provide lower bounds on the optimal value of
the problem but give only a minimal hint on how to find an approximate solution (or even
a feasible point . . . ), this will be the object of the next section.
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2.1 Semidefinite relaxations

Starting from the original nonconvex QCQP:

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m,

using xTPx = Tr(P (xxT )), we can rewrite it:

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m,

X = xxT .
(9)

We can directly relax this problem into a convex problem by replacing the last nonconvex
equality constraint X = xxT with a (convex) positive semidefiniteness constraint X−xxT �
0. We then get a lower bound on the optimal value of (1) by solving the following convex
problem:

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m,

X � xxT .

The last constraint X � xxT is convex and can be formulated as a Schur complement
(see §A.5.5 in [BV03]):

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i=1,. . . ,m,

[

X x
xT 1

]

� 0,
(10)

which is an SDP. This is called the SDP relaxation of the original nonconvex QCQP. Its
optimal value is a lower bound on the optimal value of the nonconvex QCQP. Since it’s an
SDP, it’s easy to solve, so we have a cheaply computable lower bound on the optimal value
of the original nonconvex QCQP.

2.2 Lagrangian relaxations

We now study another method for getting a cheaply computable lower bound on the optimal
value of the nonconvex QCQP. We take advantage of the fact that the dual of a problem
is always convex, hence efficiently solvable. Again, starting from the original nonconvex
QCQP:

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m,

we form the Lagrangian,

L(x, λ) = xT

(

P0 +
m
∑

i=1

λiPi

)

x+

(

q0 +
m
∑

i=1

λiqi

)T

x+ r0 +
m
∑

i=1

λiri.
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To find the dual function, we minimize over x, using the general formula (see example 4.5
in [BV03]):

inf
x∈R

xTPx+ qTx+ r =

{

r − 1
4
qTP †q, if P � 0 and q ∈ R(P )

−∞, otherwise.

The dual function is then:

g(λ) = inf
x∈R

n
L(x, λ)

= −
1

4

(

q0 +
m
∑

i=1

λiqi

)T (

P0 +
m
∑

i=1

λiPi

)† (

q0 +
m
∑

i=1

λiqi

)

+
m
∑

i=1

λiri + r0.

We can form the dual of (1), using Schur complements (cf. §A.5.5):

maximize γ +
∑m

i=1 λiri + r0

subject to

[

(P0 +
∑m

i=1 λiPi) (q0 +
∑m

i=1 λiqi) /2

(q0 +
∑m

i=1 λiqi)
T /2 −γ

]

� 0

λi ≥ 0, i = 1, . . . ,m,

(11)

in the variable λ ∈ Rm. As the dual to (1), this is a convex program, it is in fact a semidefinite
program. This SDP is called the Lagrangian relaxation of the nonconvex QCQP. It’s easy
to solve, and gives a lower bound on the optimal value of the nonconvex QCQP.

An interesting question is, what is the relation between the Lagrangian relaxation and
the SDP relaxation? They are both SDPs, and they both provide lower bounds on the
optimal value of the nonconvex QCQP. In particular, is one of the bounds better than the
other? The answer turns out to be simple: (10) and (11) are duals of each other, and so
(assuming a constraint qualification holds) the bounds are exactly the same.

2.3 Perfect duality

Weak duality implies that the optimal value of the Lagrangian relaxation is a lower bound
on that of the original program. In some particular cases, even though the original program
is not convex, this duality gap is zero and the convex relaxation produces the optimal value.

QCQP with only one constraint is a classic example (see Appendix B in [BV03], or [Fer99]
for others), based on the fact that the numerical range of two quadratic forms is a convex
set. This means that, under some technical conditions, the programs:

minimize xTP0x+ qT0 x+ r0
subject to xTP1x+ qT1 x+ r1 ≤ 0,

(12)

and
maximize γ + λr1 + r0

subject to

[

(P0 + λP1) (q0 + λq1) /2

(q0 + λq1)
T /2 −γ

]

� 0

λ ≥ 0,

(13)
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in the variables x ∈ Rn and λ ∈ R respectively, produce the same optimal value, even if the
first one is nonconvex. This result is also known as the S-procedure in control theory. The
key implication here of course is that while the original program is possibly nonconvex and
numerically hard, its dual is a semidefinite program and is easy to solve.

2.4 Examples

Let us now work out the Lagrangian relaxations of the examples detailed above.

2.4.1 MINCARD relaxation

Let’s first consider the MINCARD problem detailed in (4):

minimize Card(x)
subject to Ax � b.

Using the problem formulation in (6), the relaxation given by (10) is then:

minimize 1Tv
subject to Ax � b

−Rv � x � Rv
Xii − xi = 0, i = 1, . . . , n
[

X x
xT 1

]

� 0.

It’s easy to show that the optimal X is simply diag(x) (see [BFH00] and [LO99, Th. 5.2]);
this implies that this relaxation produces the same lower bound as the direct linear program-
ming relaxation:

minimize 1Tv
subject to Ax � b

−Rv � x � Rv
v ∈ [0, 1]n.

(14)

It is also related to the classical ℓ1 heuristic described in [BFH00], which replaces the function
Card(x) with its largest convex lower bound (over a ball in ℓ∞) ‖x‖1:

minimize ‖x‖1
subject to Ax � b.

(15)

2.4.2 Boolean least squares

The original boolean least squares problem in (2) is written:

minimize ‖Ax− b‖2

subject to x2
i = 1, i = 1, . . . , n,
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We can relax its QCQP formulation (3) as an SDP:

minimize Tr(ATAX)− 2bTAx+ bT b

subject to

[

X x
xT 1

]

� 0

Xii = 1, i = 1, . . . , n,

(16)

in the variables x ∈ Rn and X ∈ Sn
+. This program then produces a lower bound on the

optimal value of the original problem.

2.4.3 Partitioning and MAXCUT

The partitioning problem defined above reads:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n.
(17)

Here, the problem is directly formulated as a nonconvex QCQP and the variable x disappears
from the relaxation, which becomes:

minimize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n.
(18)

MAXCUT corresponds to a particular choice of matrix W .

3 Randomization

The Lagrangian relaxation techniques developed in §2 provided lower bounds on the optimal
value of the program in (1), but did not however give any particular hint on how to compute
good feasible points. The semidefinite relaxation in (10) produces a positive semidefinite
or covariance matrix together with the lower bound on the objective. In this section, we
exploit this additional output to compute good approximate solutions with, in some cases,
hard bounds on their suboptimality.

3.1 Randomization

In the last section, the original nonconvex QCQP:

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m,

was relaxed into:

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m,

[

X x
xT 1

]

� 0.
(19)
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The last (Schur complement) constraint being equivalent to X − xxT � 0, if we suppose x
and X are the solution to the relaxed program in (19), then X−xxT is a covariance matrix.

If we pick x as a Gaussian variable with x ∼ N (x,X − xxT ), x will solve the nonconvex
QCQP in (1) “on average” over this distribution, meaning:

minimize E(xTP0x+ qT0 x+ r0)
subject to E(xTPix+ qTi x+ ri) ≤ 0, i = 1, . . . ,m,

and a “good” feasible point can then be obtained by sampling x a sufficient number of times,
then simply keeping the best feasible point.

3.2 Feasible points

Of course the direct sampling technique above does not guarantee that a feasible point will
be found. In particular, if the program includes an equality constraint, then this method
will certainly fail. However, it is sometimes possible to directly project the random samples
onto the feasible set. This is the case, for example, in the partitioning problem, where we
can discretize the samples by taking the sgn(x) function. In this case, the randomization
procedure then looks like this. First, sample points xi with a normal distribution N (0, X),
where X is the optimal solution of (18). Then get feasible points by taking x̂i = sgn(xi).

3.3 Bounds on suboptimality

In certain particular cases, it is also possible to get a hard bound on the gap between the
optimal value and the relaxation result. A classic example is that of the MAXCUT bound
described in [GW95] or [BTN01, Th. 4.3.2]. The MAXCUT problem (8) reads:

maximize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(20)

its Lagrangian relaxation was computed in (18):

maximize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n.
(21)

We then sample feasible points x̂i using the procedure described above. Crucially, when
x̂ is sampled using that procedure, the expected value of the objective E(x̂TWx) can be
computed explicitly:

E(x̂TWx) =
2

π

n
∑

i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X)).

We are guaranteed to reach this expected value 2/πTr(W arcsin(X)) after sampling a few
(feasible) points x̂, hence we know that the optimal value OPT of the MAXCUT problem
is between 2/πTr(W arcsin(X)) and Tr(WX).
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Furthermore, with arcsin(X) � X (see [BTN01, p. 174]), we can simplify (and relax)
the above expression to get:

2

π
Tr(WX) ≤ OPT ≤ Tr(WX).

This means that the procedure detailed above guarantees that we can find a feasible point
that is at most 2/π suboptimal (after taking a certain number of samples from a Gaussian
distribution).

4 Linearization and convex restriction

The relaxation techniques detailed in §2 produce lower bounds on the optimal value but
no feasible points. Here, we work on the complementary approach and try to find “good”
feasible points corresponding to a local minimum. Let x(0) be an initial feasible point which
might be found using the results in the last section or by a phase I procedure; see the
discussion on phase I problems in §11.4 of [BV03]).

4.1 Linearization

We start by leaving all convex constraints unchanged, linearizing the nonconvex ones around
the original feasible point x(0). Consider for example the constraint:

xTPx+ qTx+ r ≤ 0,

we decompose the matrix P into its positive and negative parts:

P = P+ − P−, P+, P− � 0.

The original constraint can be rewritten as

xTP+x+ qT0 x+ r0 ≤ xTP−x,

and both sides of the inequality are now convex quadratic functions. We linearize the right
hand side around the point x0 to obtain

xTP+x+ qT0 x+ r0 ≤ x(0)TP−x
(0) + 2x(0)TP−(x− x(0)).

The right hand side is now an affine lower bound on the original function xTP−x (see §3.1.3
in [BV03]). This means that the resulting constraint is convex and more conservative than
the original one, hence the feasible set of the new problem will be a convex subset of the
original feasible set. Thus, by linearizing the concave parts of all constraints, we obtain a
set of convex constraints that are tighter than the original nonconvex ones. In other words,
we form a convex restriction of the problem.

10



1 1.2
0

0.1

0.2

0.3

0.4

0.5

‖Ax− b‖/(SDP bound)

fr
eq
u
en
cy

SDP bound

Figure 1: Distribution of objective values for points sampled using the randomiza-
tion technique in §3.

4.2 Iteration

The new problem, formed by linearizing all the nonconvex constraints using the method
described above, is a convex QCQP and can be solved efficiently to produce a new feasible
point x(1) with a lower objective value. If we linearize again the problem around x(1) and
repeat the procedure, we get a sequence of feasible points with decreasing objective values.

This simple idea has been discovered and rediscovered several times. It is sometimes
called the convex-concave procedure. It doesn’t work for Boolean problems, since the only
convex subsets of the feasible set are singletons.

5 Numerical Examples

In this section, we work out some numerical examples.

5.1 Boolean least-squares

We use (randomly chosen) parameters A ∈ R150×100, b ∈ R150 and x ∈ R100, the feasible set
has 2100 ≈ 1030 points. In figure (5.1), we plot the distribution of the objective values reached
by the feasible points found using the randomized procedure above. Our best solution comes
within 2.6% of the SDP lower bound.
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5.2 Partitioning

We consider here the two-way partitioning problem described in (7) and compare various
methods.

5.2.1 A simple heuristic for partitioning

One simple heuristic for finding a good partition is to solve the SDPs above, to find X⋆ (and
the bound d⋆). Let v denote an eigenvector of X⋆ associated with its largest eigenvalue, and
let x̂ = sgn(v). The vector x̂ is our guess for a good partition.

5.2.2 A randomized method

We generate independent samples using the procedure described in §3.

5.2.3 Greedy method

We can improve these results a little bit using the following simple greedy heuristic. Suppose
the matrix Y = x̂TWx̂ has a column j whose sum

∑n
i=1 yij is positive. Switching x̂j to −x̂j

will decrease the objective by 2
∑n

i=1 yij. If we pick the column yj0 with largest sum, switch
x̂j0 and repeat until all column sums

∑n
i=1 yij are negative, we further decrease the objective.

5.2.4 Numerical Example

For our example, the optimal SDP lower bound d⋆ is equal to −1641 and the sgn(x) heuristic
gives a point (partition) with total cost −1348. Extracting a solution from the SDP solution
using the simple heuristic above gives a solution with cost −1280, while applying the greedy
method pushes that cost down to −1372. Exactly what the optimal value is, we can’t say;
all we can say at this point is that it is between −1641 and −1372.

We then try the randomized method, applying the greedy method to each sample, and
plot in figure (5.2.4) a histogram of the objective obtained over 1000 samples. Many of these
samples have an objective value larger than the original one above, but some have a lower
cost. For our implementation, we found the minimum value −1392. The evolution of the
minimum value found as a function of the sample size is shown in figure (5.2.4). Note that
our best partition was found in around 100 samples. We’re not sure what the optimal cost
is, but now we know it’s between −1641 and −1392.
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Figure 2: Histogram of the objective values attained by the random sample parti-
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Figure 3: Best objective value versus number of sample points.
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