
Slide Template

Neal Parikh and Stephen Boyd

Stanford University

May 12, 2014



Outline

First section

Second section

First section 2



Bulleted list

◮ XXX

– XXX

– XXX

– XXX

◮ XXX

– XXX

– XXX

– XXX

◮ XXX

First section 3



Pictures with tikz

First section 4



Pictures with tikz

◮ convex envelope of (nonconvex) f is the largest convex
underestimator g

◮ i.e., the best convex lower bound to a function

◮ example: ℓ1 is the envelope of card (on unit ℓ∞ ball)

◮ example: ‖ · ‖∗ is the envelope of rank (on unit spectral norm ball)

◮ various characterizations: e.g., f∗∗ or convex hull of epigraph

First section 5



Outline

First section

Second section

Second section 6



Group lasso

(e.g., Yuan & Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

◮ problem:

minimize f(x) + λ
∑N

i=1 ‖xi‖2

i.e., like lasso, but require groups of variables to be zero or not

◮ also called ℓ1,2 mixed norm regularization

Second section 7



Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . . )

◮ problem:

minimize f(x) +
∑N

i=1 λi‖xgi‖2

where gi ⊆ [n] and G = {g1, . . . , gN}

◮ like group lasso, but the groups can overlap arbitrarily

◮ particular choices of groups can impose ‘structured’ sparsity

◮ e.g., topic models, selecting interaction terms for (graphical) models,
tree structure of gene networks, fMRI data

◮ generalizes to the composite absolute penalties family:

r(x) = ‖(‖xg1‖p1
, . . . , ‖xgN ‖pN

)‖p0

Second section 8



Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; . . . )

hierarchical selection:

1

2 3

4 5 6

◮ G = {{4}, {5}, {6}, {2, 4}, {3, 5, 6}, {1, 2, 3, 4, 5, 6}}

◮ nonzero variables form a rooted and connected subtree

– if node is selected, so are its ancestors

– if node is not selected, neither are its descendants

Second section 9



Sample ADMM implementation: lasso

prox_f = @(v,rho) (rho/(1 + rho))*(v - b) + b;

prox_g = @(v,rho) (max(0, v - 1/rho) - max(0, -v - 1/rho));

AA = A*A’;

L = chol(eye(m) + AA);

for iter = 1:MAX_ITER

xx = prox_g(xz - xt, rho);

yx = prox_f(yz - yt, rho);

yz = L \ (L’ \ (A*(xx + xt) + AA*(yx + yt)));

xz = xx + xt + A’*(yx + yt - yz);

xt = xt + xx - xz;

yt = yt + yx - yz;

end

Second section 10



Figure

1000 2000 3000 4000 5000

10
−3

10
−2

10
−1

10
0

 

 

k

f
(k

)
b
e
st
−
f
⋆

noise-free case
realization 1
realization 2

Second section 11



Algorithm

if L is not known (usually the case), can use the following line search:

given xk, λk−1, and parameter β ∈ (0, 1).

Let λ := λk−1.

repeat

1. Let z := proxλg(x
k − λ∇f(xk)).

2. break if f(z) ≤ f̂λ(z, x
k).

3. Update λ := βλ.

return λk := λ, xk+1 := z.

typical value of β is 1/2, and

f̂λ(x, y) = f(y) +∇f(y)T (x− y) + (1/2λ)‖x− y‖22

Second section 12


	First section
	Second section

