Slide Template

Neal Parikh and Stephen Boyd

Stanford University

May 12, 2014

Outline

First section

Second section

First section

Bulleted list

- $X X X$
- XXX
- XXX
- XXX
- $X X X$
- XXX
- XXX
- XXX
- XXX

Pictures with tikz

Pictures with tikz

- convex envelope of (nonconvex) f is the largest convex underestimator g
- i.e., the best convex lower bound to a function

- example: ℓ_{1} is the envelope of card (on unit ℓ_{∞} ball)
- example: $\|\cdot\|_{*}$ is the envelope of rank (on unit spectral norm ball)
- various characterizations: e.g., $f^{* *}$ or convex hull of epigraph

Outline

First section

Second section

Group lasso

(e.g., Yuan \& Lin; Meier, van de Geer, Bühlmann; Jacob, Obozinski, Vert)

- problem:

$$
\operatorname{minimize} \quad f(x)+\lambda \sum_{i=1}^{N}\left\|x_{i}\right\|_{2}
$$

i.e., like lasso, but require groups of variables to be zero or not

- also called $\ell_{1,2}$ mixed norm regularization

Structured group lasso

```
(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)
```

- problem:

$$
\operatorname{minimize} \quad f(x)+\sum_{i=1}^{N} \lambda_{i}\left\|x_{g_{i}}\right\|_{2}
$$

where $g_{i} \subseteq[n]$ and $\mathcal{G}=\left\{g_{1}, \ldots, g_{N}\right\}$

- like group lasso, but the groups can overlap arbitrarily
- particular choices of groups can impose 'structured' sparsity
- e.g., topic models, selecting interaction terms for (graphical) models, tree structure of gene networks, fMRI data
- generalizes to the composite absolute penalties family:

$$
r(x)=\left\|\left(\left\|x_{g_{1}}\right\|_{p_{1}}, \ldots,\left\|x_{g_{N}}\right\|_{p_{N}}\right)\right\|_{p_{0}}
$$

Structured group lasso

(Jacob, Obozinski, Vert; Bach et al.; Zhao, Rocha, Yu; ...)

hierarchical selection:

- $\mathcal{G}=\{\{4\},\{5\},\{6\},\{2,4\},\{3,5,6\},\{1,2,3,4,5,6\}\}$
- nonzero variables form a rooted and connected subtree
- if node is selected, so are its ancestors
- if node is not selected, neither are its descendants

Sample ADMM implementation: lasso

```
prox_f \(=@(v, r h o)(r h o /(1+r h o)) *(v-b)+b ;\)
prox_g \(=@(v, r h o)(\max (0, v-1 / r h o)-\max (0,-v-1 / r h o)) ;\)
\(\mathrm{AA}=A * A^{\prime} ;\)
\(\mathrm{L}=\operatorname{chol}(\operatorname{eye}(\mathrm{m})+\mathrm{AA}) ;\)
for iter \(=1: M A X \_I T E R\)
    \(x x=p r o x \_g(x z-x t, r h o) ;\)
    \(y x=p r o x \_f(y z-y t, r h o) ;\)
    \(y z=L \backslash(L, \backslash(A *(x x+x t)+A A *(y x+y t))) ;\)
    \(x z=x x+x t+A^{\prime} *(y x+y t-y z) ;\)
    \(x t=x t+x x-x z ;\)
    \(y t=y t+y x-y z ;\)
end
```

Figure

Algorithm

if L is not known (usually the case), can use the following line search:

```
given }\mp@subsup{x}{}{k},\mp@subsup{\lambda}{}{k-1}\mathrm{ , and parameter }\beta\in(0,1)
Let }\lambda:=\mp@subsup{\lambda}{}{k-1}\mathrm{ .
repeat
    1. Let z:= 箇利g
    2. break if f(z)\leq {}\mp@subsup{\hat{f}}{\lambda}{}(z,\mp@subsup{x}{}{k})\mathrm{ .
    3. Update \lambda:= \beta\lambda.
return }\mp@subsup{\lambda}{}{k}:=\lambda,\mp@subsup{x}{}{k+1}:=z
```

typical value of β is $1 / 2$, and

$$
\hat{f}_{\lambda}(x, y)=f(y)+\nabla f(y)^{T}(x-y)+(1 / 2 \lambda)\|x-y\|_{2}^{2}
$$

