
EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 6
Due Sunday 5/21 at 11:59pm via Gradescope

6.1 (7 points) Randomized preconditioners for conjugate gradient methods. In this question,
we explore the use of some randomization methods for solving overdetermined least-
squares problems, focusing on conjugate gradient methods. Letting A ∈ Rm×n be a
matrix (we assume that m ≫ n) and b ∈ Rm, we wish to minimize

f(x) =
1

2
∥Ax− b∥22 =

1

2

m∑
i=1

(aTi x− bi)
2,

where the ai ∈ Rn denote the rows of A.

Given m ∈ {2i, i = 1, 2, . . .}, the (unnormalized) Hadamard matrix of order m is
defined recursively as

H2 =

[
1 1
1 −1

]
and Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
.

The associated normalized Hadamard matrix is given by H
(norm)
m = Hm/

√
m, which

evidently satisfies H
(norm)
m

T
H

(norm)
m = Im×m. Moreover, via a recursive algorithm it is

possible to compute Hmx in time O(m logm), which is much faster than m2 for a
general matrix.

To solve the least squares minimization problem using conjugate gradients, we must
solve ATAx = AT b. In class, we discussed that using a preconditioner M such that
M ≈ A−1 can give substantial speedup in computing solutions to large problems.
Consider the following scheme to generate a randomized preconditioner, assuming that
m = 2i for some i:

1. Let S = diag(S11, . . . , Smm), where Sjj are random {−1,+1} signs

2. Let p ∈ Z+ be a small positive integer, say 20 for this problem.

3. Let R ∈ {0, 1}n+p×m be a row selection matrix, meaning that each row of R
has only 1 non-zero entry, chosen uniformly at random. (The location of these
non-zero columns is distinct.)1

4. Define Φ = RH
(norm)
m S ∈ Rn+p×m

We then define the matrix M via its inverse M−1 = ATΦTΦA ∈ Rn×n.

1Hint. To do this in Matlab, generate a random permutation inds = randperm(m), then set
R = sparse(1:(n+p), inds(1:(n+p)), ones(n+p,1)), n+p, m), in Julia, set R = sparse(1:(n+p),

inds[1:(n+p)], ones(n+p), n+p, m).

1



(a) (1 point) How many FLOPs (floating point operations) are required to com-
pute the matrices M−1 and M , respectively, assuming that you can compute the
matrix-vector product Hmv in time m logm for any vector v ∈ Rm?

(b) (1 point) How many FLOPs are required to näıvely compute ATA, assuming A
is dense (using standard matrix algorithms)?

(c) (1 point) How many FLOPs are required to compute ATAv for a vector v ∈ Rn

by first computing u = Av and then computing ATu?

(d) (1 point) Suppose that conjugate gradients runs for k iterations. Using the precon-
ditioned conjugate gradient algorithm with M = (ATΦTΦA)−1, how many total
floating point operations have been performed? How many would be required to
directly solve ATAx = AT b? How large must k be to make the conjugate gradient
method slower?

(e) (3 points) Implement the conjugate gradient algorithm for solving the positive
definite linear system ATAx = AT b both with and without the preconditioner M .
To generate data for your problem, set m = 212 and n = 400, then generate the
matrix A by setting A = randn(m, n) * spdiags(linspace(.001, 100, n))

(in Matlab) and A = randn(m, n) * spdiagm(linspace(.001, 100, n)) (in
Julia), and let b = randn(m, 1). For simplicity in implementation, you may
directly pass ATA and AT b into your conjugate gradient solver, as we only wish
to explore how the methods work. (In Matlab, the pcg method may be useful.)

Plot the norm of the residual rk = AT b− ATAxk (relative to
∥∥AT b

∥∥
2
) as a func-

tion of iteration k for each of your conjugate gradient procedures. Additionally,
compute and print the condition numbers κ(ATA) and κ(M1/2ATAM1/2).

Include your code.

2


