EE364b Spring 2023 Homework 4

Due Sunday 5/7 at 11:59pm via Gradescope

4.1 (4 points) Consider the problem

minimize
$$(x_1 - b_1)^2 + (x_2 - b_2)^2$$

subject to $x_1 = x_2$,

where $x_1, x_2, b_1, b_2 \in \mathbf{R}$ are scalars. Here x_1 and x_2 are local variables, which need to satisfy the consensus constraint $x_1 = x_2$.

- (a) (1 point) Derive the dual decomposition updates for x_1 , x_2 and λ where λ is the dual variable that corresponds to the constraint $x_1 = x_2$. (See page 10 of dual decomposition lecture slides)
- (b) (1 point) Find the value of the optimal dual parameter λ^* as a function of b_1 and b_2 .
- (c) (1 point) Show that the dual decomposition method yields dual iterates $\lambda^{(k)}$ that obey

$$\lambda^{(k+1)} - \lambda^* = (1 - \alpha)(\lambda^{(k)} - \lambda^*)$$

where α is the fixed step size in the dual subgradient method update, and k is the iteration counter.

- (d) (1 point) Show that the iterates $x_1^{(k)}, x_2^{(k)}, \lambda^{(k)}$ converge to their optimal values for a small enough step size α .
- 4.2 (4 points) Distributed ridge regression. Consider the constrained ℓ_2 -regularized least-squares ('ridge regression') problem

minimize
$$f(z) = (1/2) \left\| \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \right\|_2^2 + \mu \left\| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|_2^2$$
 subject to $x_1 + x_2 \succeq 0$,

with optimization variable $z = (x_1, x_2) \in \mathbf{R}^n \times \mathbf{R}^n$ and $\mu > 0$. We can think of x_i as the local variable for system i, with $x_1 + x_2 \succeq 0$ serving as a complicating constraint.

- (a) (2 points) Primal decomposition. Explain how to solve this problem using primal decomposition, using the subgradient method for the master problem.
- (b) (2 points) Dual decomposition. Explain how to solve this problem using dual decomposition, using the projected subgradient method for the master problem. Are we guaranteed that the primal variables $x_i^{(k)}$ converge to optimal values, and why?

4.3 (5 points) Kelley's cutting-plane algorithm. We consider the problem of minimizing a convex function $f: \mathbf{R}^n \to \mathbf{R}$ over some convex set C, assuming we can evaluate f(x) and find a subgradient $g \in \partial f(x)$ for any x. Suppose we have evaluated the function and a subgradient at $x^{(1)}, \ldots, x^{(k)}$. We can form the piecewise-linear approximation

$$\hat{f}^{(k)}(x) = \max_{i=1,\dots,k} \left(f(x^{(i)}) + g^{(i)T}(x - x^{(i)}) \right),$$

which satisfies $\hat{f}^{(k)}(x) \leq f(x)$ for all x. It follows that

$$L^{(k)} = \inf_{x \in C} \hat{f}^{(k)}(x) \le p^*,$$

where $p^* = \inf_{x \in C} f(x)$. Since $\hat{f}^{(k+1)}(x) \ge \hat{f}^{(k)}(x)$ for all x, we have $L^{(k+1)} \ge L^{(k)}$.

In Kelley's cutting-plane algorithm, we set $x^{(k+1)}$ to be any point that minimizes $\hat{f}^{(k)}$ over $x \in C$. The algorithm can be terminated when $U^{(k)} - L^{(k)} \leq \epsilon$, where $U^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$.

(a) (3 points) Use Kelley's cutting-plane algorithm to minimize the piecewise-linear function

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

that we have used for other numerical examples, with C the unit cube, *i.e.*, $C = \{x \mid ||x||_{\infty} \leq 1\}$. Generate the same data we used before using

n = 20; % number of variables

m = 100; % number of terms

randn('state',1);

A = randn(m,n);

b = randn(m, 1);

You can start with $x^{(1)} = 0$ and run the algorithm for 40 iterations. Plot $f(x^{(k)})$, $U^{(k)}$, $L^{(k)}$ and the constant p^* (on the same plot) versus k.

- (b) (2 points) Repeat for $f(x) = ||x c||_2$, where c is chosen from a uniform distribution over the unit cube C. (The solution to this problem is, of course, $x^* = c$.)
- 4.4 (5 points) Maximum and minimum volume ellipsoids. Consider the convex set

$$\mathcal{C} = \{ x \mid Ax \leq b \},\,$$

where $A \in \mathbf{R}^{n \times d}$ and $b \in \mathbf{R}^n$. (The data files Amatrix and bvector are available on Canvas.) The set \mathcal{C} is a convex polytope (i.e. a bounded polyhedron). This question considers the best inner/outer approximations of \mathcal{C} using ellipsoids.

(a) (1 point) An extreme point of a convex set S is a point \bar{x} such that for every $x_1, x_2 \in S$, $x_1, x_2 \neq \bar{x}$, there does not exist $\alpha \in (0, 1)$ such that $\bar{x} = \alpha x_1 + (1 - \alpha)x_2$. In other words, \bar{x} cannot be formed as the convex combination of any other points in S.

The extreme points of a polyhedron are called *vertices*. Vertices admit the following useful characterization. Let a_i , $i \in \{1, ..., n\}$, be the rows of A and recall that the i'th constraint of $Ax \leq b$ is active if and only if $\langle a_i, x \rangle = b_i$. Then, $\bar{x} \in \mathcal{C}$ is a vertex of \mathcal{C} if and only if the set of active constraints

$${a_i : \langle a_i, x \rangle = b_i},$$

contains d linearly independent vectors.

Compute the vertices of C and report the number. Hint: You can brute-force the set of vertices by checking all $\binom{n}{d}$ sets of d constraints for linear independence. If \mathcal{I} is such a set, then you can use $A_{\mathcal{I}}^{-1}b_{\mathcal{I}}$ to identify a potential vertex, where $A_{\mathcal{I}}$ is the sub-matrix formed by the rows index by \mathcal{I} . Don't forget to check that the potential vertex is feasible.

- (b) (2 points) Find the center of the maximum volume ellipsoid in \mathcal{C} and the center of the minimum volume ellipsoid containing \mathcal{C} . What is the ratio of their respective volumes, i.e. $\operatorname{vol}(\mathcal{E}_{\operatorname{small}})/\operatorname{vol}(\mathcal{E}_{\operatorname{big}})$, where $\operatorname{vol}(\mathcal{E}_{\operatorname{small}})$ is the maximum volume ellipsoid inside \mathcal{C} and $\operatorname{vol}(\mathcal{E}_{\operatorname{big}})$ is the minimum volume ellipsoid containing \mathcal{C} . You may use CVX/CVXPY. Hint: See 364a slides for calculating the maximum/minimum volume ellipsoid. You may find it useful to remember that maximum of a concave function over a polytope is achieved by at least one vertex of the polytope.
- (c) (2 points) Denote the two centers (vectors in \mathbf{R}^d) in part (a) by x_{small} and x_{big} respectively. Let $g \in \mathbf{R}^d$ be the all-ones vector. We will consider the cuts $g^T(x x_{\text{small}}) \geq 0$ and $g^T(x x_{\text{big}}) \geq 0$. Estimate the volume ratios

$$R_{\text{small}} := \frac{\mathbf{vol}(\{g^T(x - x_{\text{small}}) \ge 0)\} \cap \mathcal{C})}{\mathbf{vol}(\mathcal{C})},$$

and

$$R_{\text{big}} := \frac{\mathbf{vol}(\{g^T(x - x_{\text{big}}) \ge 0)\} \cap \mathcal{C})}{\mathbf{vol}(\mathcal{C})},$$

by generating $M = 10^6$ i.i.d. uniformly distributed random vectors in $[-1, +1]^d$ (i.e., x = 2*rand(d,1)-1 for M trials) and transforming them as $x' = O^T x + v$, where we provide O and v in the data files Omatrix and vvector on Canvas.

Hint: Let $M_{\mathcal{C}}$ be number of random vectors that satisfy $Ax \leq b$. Let M_{small} be the number of random vectors that satisfy $Ax \leq b$ and $g^{T}(x - x_{\text{small}}) \geq 0$.

Similarly, let $M_{\rm big}$ be the number of random vectors that satisfy $Ax \leq b$ and $g^T(x-x_{\rm big}) \geq 0$. The volume ratios can be estimated by

$$R_{\rm small} pprox rac{M_{\rm small}}{M_{\mathcal{C}}} \,,$$

and

$$R_{\rm big} pprox rac{M_{
m big}}{M_{\mathcal C}} \, .$$