
EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 4
Due Sunday 5/7 at 11:59pm via Gradescope

4.1 (4 points) Consider the problem

minimize (x1 − b1)
2 + (x2 − b2)

2

subject to x1 = x2,

where x1, x2, b1, b2 ∈ R are scalars. Here x1 and x2 are local variables, which need to
satisfy the consensus constraint x1 = x2.

(a) (1 point) Derive the dual decomposition updates for x1, x2 and λ where λ is the
dual variable that corresponds to the constraint x1 = x2. (See page 10 of dual
decomposition lecture slides)

(b) (1 point) Find the value of the optimal dual parameter λ∗ as a function of b1 and
b2.

(c) (1 point) Show that the dual decomposition method yields dual iterates λ(k) that
obey

λ(k+1) − λ∗ = (1− α)(λ(k) − λ∗)

where α is the fixed step size in the dual subgradient method update, and k is
the iteration counter.

(d) (1 point) Show that the iterates x
(k)
1 , x

(k)
2 , λ(k) converge to their optimal values for

a small enough step size α.

4.2 (4 points) Distributed ridge regression. Consider the constrained ℓ2-regularized least-
squares (‘ridge regression’) problem

minimize f(z) = (1/2)
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subject to x1 + x2 ⪰ 0,

with optimization variable z = (x1, x2) ∈ Rn ×Rn and µ > 0. We can think of xi as
the local variable for system i, with x1 + x2 ⪰ 0 serving as a complicating constraint.

(a) (2 points) Primal decomposition. Explain how to solve this problem using primal
decomposition, using the subgradient method for the master problem.

(b) (2 points) Dual decomposition. Explain how to solve this problem using dual
decomposition, using the projected subgradient method for the master problem.
Are we guaranteed that the primal variables x

(k)
i converge to optimal values, and

why?
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4.3 (5 points) Kelley’s cutting-plane algorithm. We consider the problem of minimizing a
convex function f : Rn → R over some convex set C, assuming we can evaluate f(x)
and find a subgradient g ∈ ∂f(x) for any x. Suppose we have evaluated the function
and a subgradient at x(1), . . . , x(k). We can form the piecewise-linear approximation

f̂ (k)(x) = max
i=1,...,k

(
f(x(i)) + g(i)T (x− x(i))

)
,

which satisfies f̂ (k)(x) ≤ f(x) for all x. It follows that

L(k) = inf
x∈C

f̂ (k)(x) ≤ p⋆,

where p⋆ = infx∈C f(x). Since f̂ (k+1)(x) ≥ f̂ (k)(x) for all x, we have L(k+1) ≥ L(k).

In Kelley’s cutting-plane algorithm, we set x(k+1) to be any point that minimizes f̂ (k)

over x ∈ C. The algorithm can be terminated when U (k) − L(k) ≤ ϵ, where U (k) =
mini=1,...,k f(x

(i)).

(a) (3 points) Use Kelley’s cutting-plane algorithm to minimize the piecewise-linear
function

f(x) = max
i=1,...,m

(aTi x+ bi)

that we have used for other numerical examples, with C the unit cube, i.e.,
C = {x | ∥x∥∞ ≤ 1}. Generate the same data we used before using

n = 20; % number of variables

m = 100; % number of terms

randn(’state’,1);

A = randn(m,n);

b = randn(m,1);

You can start with x(1) = 0 and run the algorithm for 40 iterations. Plot f(x(k)),
U (k), L(k) and the constant p⋆ (on the same plot) versus k.

(b) (2 points) Repeat for f(x) = ∥x− c∥2, where c is chosen from a uniform distribu-
tion over the unit cube C. (The solution to this problem is, of course, x⋆ = c.)

4.4 (5 points) Maximum and minimum volume ellipsoids. Consider the convex set

C = {x | Ax ⪯ b} ,

where A ∈ Rn×d and b ∈ Rn. (The data files Amatrix and bvector are available on
Canvas.) The set C is a convex polytope (i.e. a bounded polyhedron). This question
considers the best inner/outer approximations of C using ellipsoids.
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(a) (1 point) An extreme point of a convex set S is a point x̄ such that for every
x1, x2 ∈ S, x1, x2 ̸= x̄, there does not exist α ∈ (0, 1) such that x̄ = αx1+(1−α)x2.
In other words, x̄ cannot be formed as the convex combination of any other points
in S.
The extreme points of a polyhedron are called vertices. Vertices admit the fol-
lowing useful characterization. Let ai, i ∈ {1, . . . , n}, be the rows of A and recall
that the i’th constraint of Ax ⪯ b is active if and only if ⟨ai, x⟩ = bi. Then, x̄ ∈ C
is a vertex of C if and only if the set of active constraints

{ai : ⟨ai, x⟩ = bi},

contains d linearly independent vectors.

Compute the vertices of C and report the number. Hint: You can brute-force the
set of vertices by checking all

(
n
d

)
sets of d constraints for linear independence. If

I is such a set, then you can use A−1
I bI to identify a potential vertex, where AI

is the sub-matrix formed by the rows index by I. Don’t forget to check that the
potential vertex is feasible.

(b) (2 points) Find the center of the maximum volume ellipsoid in C and the center of
the minimum volume ellipsoid containing C. What is the ratio of their respective
volumes, i.e. vol(Esmall)/vol(Ebig), where vol(Esmall) is the maximum volume ellip-
soid inside C and vol(Ebig) is the minimum volume ellipsoid containing C. You may
use CVX/CVXPY. Hint: See 364a slides for calculating the maximum/minimum
volume ellipsoid. You may find it useful to remember that maximum of a concave
function over a polytope is achieved by at least one vertex of the polytope.

(c) (2 points) Denote the two centers (vectors in Rd) in part (a) by xsmall and xbig

respectively. Let g ∈ Rd be the all-ones vector. We will consider the cuts gT (x−
xsmall) ≥ 0 and gT (x− xbig) ≥ 0. Estimate the volume ratios

Rsmall :=
vol({gT (x− xsmall) ≥ 0)} ∩ C)

vol(C)
,

and

Rbig :=
vol({gT (x− xbig) ≥ 0)} ∩ C)

vol(C)
,

by generating M = 106 i.i.d. uniformly distributed random vectors in [−1,+1]d

(i.e., x = 2*rand(d,1)-1 for M trials) and transforming them as x′ = O⊤x + v,
where we provide O and v in the data files Omatrix and vvector on Canvas.

Hint: Let MC be number of random vectors that satisfy Ax ⪯ b. Let Msmall

be the number of random vectors that satisfy Ax ⪯ b and gT (x − xsmall) ≥ 0.
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Similarly, let Mbig be the number of random vectors that satisfy Ax ⪯ b and
gT (x− xbig) ≥ 0. The volume ratios can be estimated by

Rsmall ≈
Msmall

MC
,

and

Rbig ≈
Mbig

MC
.
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