
EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 3
Due Friday 4/30 at 11:59pm via Gradescope

3.1 (4 points) Constrained subgradient method. Consider the optimization problem

minimize{xj}Jj=1
f(x1, . . . , xJ) := ∥b−

∑J
j=1 Ajxj∥1

s.t. Ajxj ≥ 0 and ∥xj∥2 ≤ λ, ∀j ∈ {1, 2, . . . , J},

with variable x1, . . . , xJ ∈ Rn and problem data A1, . . . , AJ ∈ Rm×n, b ∈ Rm and
λ > 0. Since the ℓ1 loss puts less emphasis on poorly-fit outliers than the typical least-
squares loss, this can be interpreted as a robust regression problem. We will apply the
subgradient method for constrained optimization given on page 11 of the lecture slides.

(a) Let J = 3, n = 100, m = 10, and λ = 1. Generate random matrices A1, . . . , AJ ∈
Rm×n with independent uniformly distributed entries in the interval

[
0, 1√

m

)
and,

random vectors x1, . . . , xJ ∈ Rn with independent uniformly distributed entries

in the interval
[
0, 1√

n

)
, then set b =

∑J
j=1Ajxj. Initialize the constrained sub-

gradient methods by sampling each block as x0
i ∼ N (0, I/

√
n). Plot convergence

in terms of the objective f(x
(k)
1 , . . . , x

(k)
J ). Try different step length schedules and

compare them in the same plot. Which works best? Also, plot the maximal
violation of the constraints at each step.

(b) Implement the primal-dual subgradient method and compare with the constrained
subgradient method using the problem data you generated in Part (a). Which
method is faster?

3.2 (5 points) Stochastic Log-optimal portfolio optimization using return oracle. We con-
sider the portfolio optimization problem

maximize Er log(r
Tx)− λ

2
∥x∥22

subject to 1Tx = 1, x ⪰ 0,

with variable (portfolio weights) x ∈ Rn and ℓ2-regularization parameter λ > 0. The
expectation is over the distribution of the (total) return vector r ∈ Rn

++, which is a
random variable. The ℓ2-regularization parameter λ lets us trade off between maxi-
mizing the returns of the portfolio and evenly distributing the portfolio weights over
different investments. (Although not relevant in this problem, the log-optimal portfo-
lio maximizes the long-term growth of an initial investment, assuming the investments
are re-balanced to the log-optimal portfolio after each investment period, and ignoring
transaction costs.)

1

http://web.stanford.edu/class/ee364b/lectures/constr_subgrad_slides.pdf


In this problem we assume that we do not know the distribution of r (other than
that we have r ≻ 0 almost surely). However, we have access to an oracle that will
generate independent samples from the return distribution. (Although not relevant,
these samples could come from historical data, or stochastic simulations, or a known
or assumed distribution.)

(a) (1 point) Explain how to use the (projected) stochastic subgradient method, using
one return sample for each iteration, to find (in the limit) a log-optimal portfolio.
Describe how to carry out the projection required, and how to update the portfolio
in each iteration.

Hint. Note that projecting x(k) onto the constraints involves projecting onto a
simplex, or solving the optimization problem

minimize (1/2)∥z − x(k)∥22
subject to 1T z = 1, z ⪰ 0,

(1)

with variable z. One way to solve the problem is to introduce a dual variable ν
for the equality constraint and write the (partial) Lagrangian as

L(z, ν) = (1/2)∥z − x(k)∥22 + ν(1T z − 1),

with domL(z, ν) = Rn
+ × R (in other words, the inequality constraint z ⪰ 0

is implicit). Consider the single variable function g(ν) obtained by minimizing
L(z, ν) over z. The value ν⋆ that maximizes g(ν) can be found using bisection,
and the solution z⋆ to problem (1) can be found given ν⋆.

(b) (1 point) Implement the method and run it on the problem with n = 10 assets,
with return sample oracle log_opt_return_sample in the files hw3_utils.py,
hw3_utils.jl, and log_opt_return_sample.m. This function called with argu-
ment m returns an n×m matrix whose columns are independent return samples.
We have also provided Python/Julia/MATLAB functions to project onto the sim-
plex (see Canvas/Files/Homeworks).

You are welcome to look inside hw3_utils.py to see how we are generating the
sample. The distribution is a mixture of two log-normal distributions; you can
think of one as the standard return model and the other as the return model
in some abnormal regime. However, your stochastic subgradient algorithm can
only call log_opt_return_sample(1), once per iteration; you cannot use any
information found inside the file in your implementation.

To get a Monte Carlo approximation of the objective function value, you can gen-
erate a block of, say, 105 samples (using R_emp=log_opt_return_sample(1e5),
which only needs to be done once). In Python, you can then use obj_hat =

np.mean(np.log(R_emp @ x)) - lambd/2 * np.dot(x, x) as your estimate of
the objective function.

Run the algorithm with both λ = 1 and λ = 10. Plot the (approximate) objective
value versus iteration, as well as the best approximate objective value obtained

2



up to that iteration, and compare the solutions found for λ = 1 and λ = 10.
(Note that evaluating the objective will require far more computation than each
stochastic subgradient step.)

You may need to play around with the step size selection in your method to get
reasonable convergence. Remember that your objective value evaluation is only
an approximation.

(c) (1 point) Repeat part (b) without the constraint x ≥ 0. In other words, solve the
optimization problem

maximize Er log(r
Tx)− λ

2
∥x∥22

subject to 1Tx = 1,

using the same algorithm as in part (b) (though the projection onto the constraints
will be different, because the constraints are different). As in part (b), run the
algorithm for both λ = 1 and λ = 10, plot the (approximate) objective value
versus iteration, as well as the best approximate objective value obtained up to
that iteration, and compare the solutions for the different values of λ.

(d) (extra credit: 2 points) Repeat part (b) using Mirror Descent and stochastic
subgradients.

3.3 (4 points) Consider the Bregman divergence D(x, y) =
∑

i xi log(xi/yi) − (xi − yi),
which is known as the generalized KL divergence.

Show that the projection with respect to this Bregman divergence on the simplex, i.e.,
∆n = {x ∈ Rn

+ | 1Tx = 1}, amounts to a simple renormalization y → y/∥y∥1.

3.4 (4 points) High dimensional problems, mirror descent, and gradient descent. We con-
sider using mirror descent versus projected subgradient descent to solve the non-smooth
minimization problem

minimize f(x) = max
i∈{1,...,m}

{aTi x+ bi} subject to x ∈ ∆n = {z ∈ Rn
+ | zT1 = 1}.

Implement mirror descent with the choice h(x) =
∑n

i=1 xi log xi and projected subgra-
dient descent for this problem. (You will need to project onto the simplex efficiently
for this to be a reasonable method at all.) You will compare the performance of these
two methods.

Generate random problem data for the above objective with ai drawn as i.i.d.N(0, In×n)
(multivariate normals) and bi drawn i.i.d. N(0, 1), where n = 500 and m = 50. Solve
the problem using CVX (or Convex.jl or CVXPY), then run mirror descent and pro-
jected gradient descent on the same data for 100 iterations. Run each method with
constant stepsizes α ∈ {2−12, 2−11, . . . , 26, 27}. Repeat this 25 times, then plot the
average optimality gap f(xk)− f(x⋆) or fk

best − f(x⋆) as a function of iteration for the
best stepsize (chosen by smallest optimality gaps) for each method. Which method
gives the best performance?

3


