
EE364b Prof. M. Pilanci

EE364b Spring 2023 Homework 2
Due Sunday 4/23 at 11:59pm via Gradescope

2.1 (10 points) Subgradient methods for Lasso. Consider the optimization problem

minimize f(x) := 1
2
∥Ax− b∥22 + λ∥x∥1 ,

with variables x ∈ Rn and problem data A ∈ Rm×n, b ∈ Rm and λ > 0. This model is
known as Lasso, or Least Squares with ℓ1 regularization, which encourages sparsity in
the solution via the non-smooth penalty ∥x∥1 :=

∑n
j=1 |xj|. In this problem, we will

explore various subgradient methods for fitting this model.

(a) (1 points) Derive the subdifferential ∂f(x) of the objective.

(b) (1 points) Find the update rule of the subgradient method and state the compu-
tational complexity of applying one update using big O notation in terms of the
dimensions.

(c) (5 points) Let n = 1000, m = 200 and λ = 0.01. Generate a random matrix
A ∈ Rm×n with independent Gaussian entries with mean 0 and variance 1/m, and

a fixed vector x∗ =
[
1, ..., 1︸ ︷︷ ︸
k times

, 0, ..., 0︸ ︷︷ ︸
n−k times

]T ∈ Rn. Let k = 5 and then set b = Ax∗.

Implement the subgradient method to minimize f(x), initialized at the all-zeros
vector. Try different step size rules, including constant step size, constant step
length, 1/

√
k, 1/k, Polyak’s step length with estimated objective value as shown

in lecture slides. Plot objective value versus iteration curves of different step size
rules on the same figure.

(d) (3 points) Repeat part (c) using a heavy ball term, βk(x
k − xk−1), added to the

subgradient, as described on page 25 of lecture slides. Try different step size rules
as in part (c) and tune the heavy ball parameter βk = β for faster convergence.

(e) (3 points) We can reformulate the optimization problem as follows:

minx,y
1
2
∥Ax− b∥22 + λ∥y∥1 s.t. x = y.

Derive the update rule of the primal-dual subgradient method for this problem.

(f) (3 points) Run the primal-dual subgradient method to solve the optimization
problem in part (e) using the same values for A and b as in part (c), and an
all-zeros initialization. Try constant step size, 1/

√
k, and 1/k step size rules, and

plot the objective values on the same figure. How does increasing the parameter
ρ affect convergence?
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2.2 (4 Points) Recovering Discrete Signals via Convex Optimization. Suppose that x is an
n dimensional signal taking values only in {−1,+1}, i.e., x ∈ {−1,+1}n, and we have
observations y = Ax. Here, A ∈ Rm×n is a matrix whose entries are known. This
setting is frequently encountered in wireless communication systems. Typically, the
signal x carries digital information and A models the propagation of the signal over a
wireless channel. You will try recovering the signal by finding a point x̂ that satisfies
∥x̂∥∞ ≤ 1 and Ax̂ = y. Generate a random matrix A with independent standard Gaus-
sian entries and random signal x ∈ {−1,+1}n with independent uniformly distributed
values in {−1,+1} and let y = Ax.

(a) Formulate an optimization problem and propose an algorithm to recover a signal
from measurements y = Ax obeying the constraint ∥x∥∞ ≤ 1.

(b) Plot the convergence of the algorithm in part (a) in terms of the Euclidean distance
∥x̂− x∥2 for n = 100 and m ∈ 50, 80, 90. Plot the original and recovered signals.

2.3 (4 Points) Line-search for Non-smooth Functions. In this question, we will examine
the feasibility of line-search for choosing the step-size in subgradient descent. Let
f : Rn → R be a convex function. At iteration k of subgradient descent, the Armijo
line-search selects the largest step-size αk > 0 which satisfies

f(xk − αkgk) ≤ f(xk)− cαk∥gk∥22, (1)

where gk ∈ ∂f(xk) and c ∈ (0, 1) is a relaxation parameter. In practice, this can be
achieved by reducing the step-size as αk ← βαk for some β ∈ (0, 1) until (1) is satisfied.
This is called backtracking.

We will analyze the performance of this backtracking line-search procedure for the
following piece-wise linear function.

f(x) =


−2x if x ≤ 0

−1
2
x if x ∈ (0, 4)

x− 6 if x ≥ 4.

(a) Plot f over the domain [−2, 6] in your favorite plotting software and report the
figure. Is f a convex function? Report the minimizer(s) of f .

(b) Since f is piece-wise linear with a finite number of pieces, its subdifferential takes
only a finite number of distinct set values. Report each unique subdifferential set
of f and the interval over which it is valid.

(c) Suppose we attempt to minimize f using subgradient descent with the Armijo
line-search. In particular, suppose that we choose a random subgradient at each
iteration and backtrack on αk until (1) holds.

Suppose c > 0.25 and show that there exists an initial point x0 ∈ [−2, 6], x0 ̸∈
argminx f(x) and subgradient g0 ∈ ∂f(x0) such that no step-size α0 > 0 exists for
which the Armijo condition holds.
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(d) Now let c ∈ (0, 1). Modify f using knowledge of c to show that there exists a
function for which the line-search fails analogously to part (c). As in part (c),
enforce x0 ̸∈ argminx f(x).

2.4 (4 points) Finding a point in the intersection of convex sets. Let A ∈ Rn×n be a
positive definite matrix and let Σ be an n × n diagonal matrix with diagonal entries
σ1, . . . , σn > 0, and y a given vector in Rn. Consider the compact convex sets E =
{z ∈ Rn | ∥A1/2(z − y)∥2 ≤ 1} and B = {z ∈ Rn | ∥Σz∥∞ ≤ 1}.

(a) (2 points) Formulate an optimization problem and propose an algorithm in order
to find a point x ∈ E ∩ B. You can assume that E ∩ B is not empty. Your
algorithm must be provably converging (although you do not need to prove it and
you can simply refer to the lecture slides).

(b) (2 points) Implement your algorithm with the following data: n = 2, y = (3, 2),
σ1 = 0.5, σ2 = 1,

A =

[
1 0
−1 1

]
,

and x = (2, 1). Plot the objective value of your optimization problem versus the
number of iterations.

2.5 Optional (extra credit, 4 points). Non-convex non-differentiable functions, Clarke sub-
differentials and Neural Networks. Let f : Rn → R be a given function that we do
not assume to be convex nor to be differentiable (e.g., a deep neural network with
ReLU activation functions), so that the subdifferential ∂f(x) = {g ∈ Rn | f(y) ≥
f(x)+ g⊤(y−x) ∀y} is possibly an empty set. In this question, we explore generalized
subdifferentials, or Clarke subdifferentials, as we have seen on page 11 of the lecture
notes.

Let D ⊂ Rn be the set of points at which f is differentiable. We assume that D has
(Lebesgue) measure 1, meaning that f is differentiable almost everywhere. The Clarke
subdifferential of f at x is then defined as

∂Cf(x) = Co
{
lim
k→∞
∇f(xk) | xk → x, xk ∈ D

}
.

The goal of this exercise is to characterize some basic properties of Clarke subdifferen-
tials, relate ∂Cf(x) to ∂f(x) and study some implications of the condition 0 ∈ ∂Cf(x),
which is necessary and sufficient for global optimality in the convex case.

We make the following technical assumption: we assume that f is locally Lipschitz,
i.e., for any x ∈ Rn, there exists η > 0 and Lx > 0 such that |f(y)−f(z)| ≤ Lx∥y−z∥2
for any y, z such that ∥x − y∥2, ∥x − z∥2 ≤ η. Then, it follows that the function f is
differentiable almost everywhere with respect to the Lebesgue measure (this result is
sometimes referred to as Rademacher’s theorem [BL10]).

Prove the following:
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(a) If f is a continuously differentiable function then ∂Cf(x) = {∇f(x)}.
(b) If f is convex then ∂Cf(x) ⊆ ∂f(x). Show that equality actually holds, i.e.,

∂Cf(x) = ∂f(x). Hint: Suppose by contradiction that there exists g ∈ ∂f(x) such
that g ̸∈ ∂Cf(x). Set h(x) = f(x) − gTx. Show that 0 ∈ ∂h(x) and 0 ̸∈ ∂Ch(x).
Use the hyperplane separation theorem to conclude.

We say that x is Clarke stationary if 0 ∈ ∂Cf(x). If f is convex, then, from (b), we
know that x is a global minimizer of f . For a non-convex function f , this property
does not extend in general as we explore next.

(c) Suppose that x is a local minimum (resp. maximum) of f , i.e., there exists a
radius η > 0 such that f(y) ≥ f(x) (resp. f(y) ≤ f(x)) for any y such that
∥y − x∥2 ≤ η. Show that x is Clarke stationary. Hint: suppose by contradiction
that 0 ̸∈ ∂Cf(x) and conclude by using the hyperplane separating theorem with the
convex sets ∂Cf(x) and {0}.

(d) Suppose that infx f(x) > −∞ and that infx f(x) is attained. Show that if x is
the unique Clarke stationary point of f , then x is the unique global minimizer of
f .

Finally, we study two examples of non-convex non-differentiable functions: a two-
dimensional input function which has a unique Clarke stationary point that is the
global minimizer, and, a neural network training loss which has a spurious Clarke
stationary point at (0, . . . , 0).

(e) Consider the function with two-dimensional inputs f(x1, x2) = 10 |x2−x2
1|+(1−

x1)
2. Show that the unique Clarke stationary point of f is (x1, x2) = (1, 1) and

that it is the unique global minimizer of f .

(f) Consider a supervised learning setting with a neural network parameterization:
let X ∈ Rn×d be a given data matrix and y ∈ Rn be a vector of real-valued obser-
vations. For the neural network parameters u1, . . . , um ∈ Rd and α1, . . . , αm ∈ R,
consider the loss function

f(u1, . . . , um, α1, . . . , αm) = ∥y −
m∑
i=1

σ(Xui)αi∥22 ,

where we have introduced the component-wise ReLU activation function σ defined
as σ(z) = (max{z1, 0}, . . . ,max{zn, 0}) ∈ Rn for z = (z1, . . . , zn) ∈ Rn. Show
that 0 ∈ ∂fC(0, . . . , 0, 0, . . . , 0).
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