
EE364b Prof. M. Pilanci

EE364b Spring 2022 Homework 1
Due Sunday 4/16 at 11:59pm via Gradescope

1.0 (0 points) Course forum data opt-out form. The course staff is hoping to train a
language model on the discussions on public conversations in Ed. We hope that this
will help future EE364a/b students by enabling fast automated help and new CVXPY
debugging tools in future quarters. No private Ed posts will be included in
the dataset under any circumstance. Public conversations will be stripped
of personally identifiable information before contributing to the model’s
training.

If you would like to opt-out or change your consent status at any point in the quarter
please fill out this form: https://forms.gle/2aqa9w2xdPAdz1wp8

1.1 (8 points) Parallel Subgradient Computation using Dask. In this question, you will
implement subgradient computations using the parallel computing library Dask.

(a) (0 points) Read the example showing how to modify Python code to utilize data
parallelism via Dask here. Install Python and Dask as described on this page.

(b) (2 points) Suppose that x ∈ Rn is fixed and given. Compute a subgradient of the
function

f(x) := max
j∈{1,...,m}

aTj x

by using the Python code template below (also available in Canvas/Files/Homeworks).
Set n = 100 × 106 and m = 4. Generate x ∈ Rn and a1, ..., am ∈ Rn randomly
and independently from a standard normal distribution. Your code should return
a valid subgradient of f(x) at x. Repeat the data generation and subgradient
calculation for 100 trials and plot a histogram of the total computation time of
the subgradient using the serial approach.

(c) (3 points) Implement the same subgradient computation in (b) using Dask to see
the benefit of data parallelism in terms of the total computation time. You only
have to modify your code in (b) using dask.delayed as shown in this tutorial.
Repeat the data generation and subgradient calculation for 100 trials and plot a
histogram of the total computation time of the subgradient with parallelization.

(d) (2 points) Implement the same subgradient calculation in part (b) using numpy.matmul()
and numpy.argmax(). Repeat the data generation and subgradient calculation for
100 trials and plot a histogram of the total computation time of the subgradient
with Numpy.

(e) (1 points) Visualize the computation graph for your Dask based implementation
using the function visualize() for n = 5, m = 4.

1

https://forms.gle/2aqa9w2xdPAdz1wp8
https://docs.dask.org/en/stable/delayed.html#example
https://docs.dask.org/en/stable/install.html
https://docs.dask.org/en/stable/delayed.html
https://docs.dask.org/en/stable/delayed.html

from time import time

import dask

import numpy as np

def inprod(x, y):

return np.dot(x,y)

n, m = 100000000, 4

data = np.random.randn(m,n)

start = time()

output = []

x= np.random.randn(n)

for i in range(data.shape[0]):

output.append(inprod(data[i,:],x))

index = np.argmax(output)

print("Time spent for the computation without parallelization:",time()-start)

1.2 (3 points) Does autodiff work? Calculate a ‘gradient’ of the following functions using
an automatic differentation (autodiff) method at the specified points. Check whether
the result is a valid subgradient and give an explanation if there is a mismatch. You
may use any programming language and any autodiff package.

(a) f(x) = max(x, 0)2 at x = 0

(b) f(x) = min(x, 0) + max(x, 0) at x = 0

(c) f(x) = min(x, 0) + max(x, 0) at x = 10−50

(d) f(x) = min(x, 0) + max(x, 0) at x = 10−30

(e) f(x) = min(|x|, x) at x = 0

(f) f(x) = min(x, |x|) at x = 0

Hint: You can use Pytorch and Google Colab for autodiff (recommended)1. Please see
the following example which calculates the gradient of ReLU(x) = max(x, 0) at x = 0.

import torch

x = torch.tensor([0.], requires_grad=True)

zero = torch.tensor([0.])

f = torch.max(x,zero)

f.backward()

print(x.grad) #prints the gradient of f with respect to x at its current value

1You can run your python script remotely using a Google Colab notebook: colab.research.google.com

2

http://colab.research.google.com

1.3 (2 points) Subgradients in ChatGPT. Large-language models like ChatGPT and GPT-
4 have been making waves in the machine learning community. In this problem, we
investigate the mathematical capabilities of ChatGPT through the calculation of sub-
gradients.

(a) Suppose we are interested in a subgradient of f(x) = min(x, 0) + max(x, 0) at
x = 0. Start with the following query in ChatGPT:

Find a subgradient of the function min(x, 0) + max(x, 0) at x = 0.

Does ChatGPT give the correct answer? If not, where did ChatGPT go wrong
in its calculation? Attach a screenshot of both the query and output with your
submission.

(b) If ChatGPT gave the wrong answer in part (a), develop your own sequence of
queries that guide ChatGPT to the correct answer. What was your strategy to
guide ChatGPT to the correct answer?

If ChatGPT gave the correct answer in part (a), try the query from part (a) again
in several (at least 2) new chats. Does ChatGPT still give the correct answer?

In either case, attach a screenshot of both the queries and outputs with your
submission.

1.4 (6 points) Subdifferential sets. For each of the following convex functions, determine
the subdifferential set at the specified point.

(a) f(x) = ELUα(x) ≜

{
α(ex − 1), x < 0

x, x ≥ 0
with 0 ≤ α < 1, at x = 0.2

(b) f(x) = ELU1(x) at x = 0.

(c) f(x) = 1
2
∥x∥22 + ∥x∥1 at x = (−2, 0, 1).

(d) f(x) = ∥Ax∥∞ with A =

1 2 1
1 2 1
1 2 1

, at x = (1,−1, 1).

(e) f(x1, x2) = log(e|x1| + e|x2|) at (x1, x2) = (0, 0).

(f) f(x1, x2) = max{x1 + x2 + 1, x2
1 + x2

2, (x1 + 2x2)
2 − 6} at (x1, x2) = (1, 1).

1.5 (6 points) Weak subgradient calculus. For each of the following convex functions,
explain how to calculate a subgradient at a given x.

(a) f(x) = − log(min{aTx+b, 1}), where a ∈ Rn, b ∈ R, x ∈ H+ = {w : aTw+b > 0}.
(b) f(x) = maxi=1,...,m − log(min{aTi x+ bi, 1}).

2The Exponential Linear Unit (ELU) is a generalization of the Rectified Linear Unit (ReLU) activation
function used in training deep neural networks (Clevert et al., 2016).

3

https://chat.openai.com/

(c) f(x) = maxt∈∆n−2 p(x, t) = x1 + x2t1 + · · · + xntn−1, where ∆n−1 = {z : z ≥
0, 1⊤z = 1} is the probability simplex.

(d) f(x) = x[1] + · · ·+ x[k], where x[i] denotes the ith largest element of the vector x.

(e) f(x) = miny⪰0 ∥x− y∥2A, i.e., the square of the distance of x in the matrix norm
∥z∥2A = z⊤Az to the non-negative orthant. You may assume that A is positive def-
inite. (Hint: You may use duality, and then use subgradient the rule for pointwise
maximum)

(f) f(x) = max∥y∥∞≤b y
TBx, i.e., the partial maximization of a multilinear problem

over the infinity ball. (Hint: You may use the subgradient rule for pointwise
maximum)

4

