Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

9. Unconstrained minimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Unconstrained minimization

unconstrained minimization problem

minimize f(x)

we assume

- -f convex, twice continuously differentiable (hence **dom** f open)
- optimal value $p^{\star} = \inf_{x} f(x)$ is attained at x^{\star} (not necessarily unique)
- optimality condition is $\nabla f(x) = 0$
- minimizing *f* is the same as solving $\nabla f(x) = 0$
- a set of n equations with n unknowns

Quadratic functions

- convex quadratic: $f(x) = (1/2)x^T P x + q^T x + r, P \ge 0$
- we can solve exactly via linear equations

$$\nabla f(x) = Px + q = 0$$

much more on this special case later

Iterative methods

for most non-quadratic functions, we use iterative methods

- ▶ these produce a sequence of points $x^{(k)} \in \mathbf{dom} f, k = 0, 1, ...$
- $x^{(0)}$ is the initial point or starting point
- $x^{(k)}$ is the *k*th **iterate**
- we hope that the method converges, i.e.,

$$f(x^{(k)}) \to p^{\star}, \qquad \nabla f(x^{(k)}) \to 0$$

Initial point and sublevel set

- algorithms in this chapter require a starting point $x^{(0)}$ such that
 - $-x^{(0)} \in \mathbf{dom} f$
 - sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed
- > 2nd condition is hard to verify, except when all sublevel sets are closed
 - equivalent to condition that epi f is closed
 - true if $\mathbf{dom} f = \mathbf{R}^n$
 - true if $f(x) \to \infty$ as $x \to \mathbf{bd} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Convex Optimization

Strong convexity and implications

• *f* is **strongly convex** on *S* if there exists an m > 0 such that

 $\nabla^2 f(x) \ge mI$ for all $x \in S$

- same as $f(x) (m/2) ||x||_2^2$ is convex
- if *f* is strongly convex, for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

- hence, S is bounded
- we conclude $p^* > -\infty$, and for $x \in S$,

$$f(x) - p^{\star} \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m, which usually you do not)

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Descent methods

descent methods generate iterates as

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$

with $f(x^{(k+1)}) < f(x^{(k)})$ (hence the name)

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- $\Delta x^{(k)}$ is the step, or search direction
- $t^{(k)} > 0$ is the step size, or step length
- From convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$
- this means Δx is a **descent direction**

Generic descent method

General descent method.

given a starting point $x \in \mathbf{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. **Update.** $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

- exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$
- **backtracking line search** (with parameters $\alpha \in (0, 1/2), \beta \in (0, 1)$)
 - starting at t = 1, repeat $t := \beta t$ until $f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$
- ▶ graphical interpretation: reduce t (*i.e.*, backtrack) until $t \le t_0$

Gradient descent method

• general descent method with $\Delta x = -\nabla f(x)$

```
given a starting point x ∈ dom f.
repeat

Δx := -∇f(x).
Line search. Choose step size t via exact or backtracking line search.
Update. x := x + t∆x.

until stopping criterion is satisfied.
```

▶ stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$

convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0, 1)$ depends on $m, x^{(0)}$, line search type

very simple, but can be very slow

Example: Quadratic function on R²

• take
$$f(x) = (1/2)(x_1^2 + \gamma x_2^2)$$
, with $\gamma > 0$

• with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- $-\,$ very slow if $\gamma\gg 1$ or $\gamma\ll 1$
- example for $\gamma = 10$ at right
- called zig-zagging

Convex Optimization

Example: Nonquadratic function on \mathbf{R}^2

•
$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

exact line search

Example: A problem in \mathbf{R}^{100}

•
$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

▶ linear convergence, *i.e.*, a straight line on a semilog plot

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Steepest descent method

• normalized steepest descent direction (at *x*, for norm $\|\cdot\|$):

 $\Delta x_{\text{nsd}} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$

- interpretation: for small $v, f(x + v) \approx f(x) + \nabla f(x)^T v$;
- direction Δx_{nsd} is unit-norm step with most negative directional derivative
- (unnormalized) steepest descent direction: $\Delta x_{sd} = \|\nabla f(x)\|_* \Delta x_{nsd}$
- satisfies $\nabla f(x)^T \Delta x_{sd} = -\|\nabla f(x)\|_*^2$
- steepest descent method
 - general descent method with $\Delta x = \Delta x_{sd}$
 - convergence properties similar to gradient descent

Examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ▶ ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = ||\nabla f(x)||_{\infty}$
- unit balls, normalized steepest descent directions for quadratic norm and ℓ_1 -norm:

Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- ► interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$
- shows choice of P has strong effect on speed of convergence

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Newton step

• Newton step is
$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretation: $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

$$(x, f(x))$$

$$(x + \Delta x_{nt}, f(x + \Delta x_{nt}))$$

Convex Optimization

Another intrepretation

• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

And one more interpretation

• Δx_{nt} is steepest descent direction at x in local Hessian norm $||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}$

► dashed lines are contour lines of *f*; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$

• arrow shows $-\nabla f(x)$

Newton decrement

- Newton decrement is $\lambda(x) = (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$
- a measure of the proximity of x to x^{\star}
- gives an estimate of $f(x) p^*$, using quadratic approximation \hat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Newton's method

```
given a starting point x \in \text{dom} f, tolerance \epsilon > 0.
repeat
```

1. Compute the Newton step and decrement.

 $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$

- 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$.
- 3. Line search. Choose step size *t* by backtracking line search.
- 4. **Update.** $x := x + t\Delta x_{nt}$.

- affine invariant, i.e., independent of linear changes of coordinates
- Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are $y^{(k)} = T^{-1}x^{(k)}$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- ▶ $\nabla^2 f$ is Lipschitz continuous on *S*, with constant *L* > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Convex Optimization

Classical convergence analysis

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^* > -\infty$, this phase ends after at most $(f(x^{(0)}) p^*)/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- all iterations use step size t = 1
- ► $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

conclusion: number of iterations until $f(x) - p^* \le \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on *m*, *L*, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- ▶ in practice, constants m, L (hence γ, ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (*i.e.*, explains two algorithm phases)

Example: R²

(same problem as slide 9.13)

- backtracking parameters $\alpha = 0.1, \beta = 0.7$
- converges in only 5 steps
- quadratic local convergence

Example in \mathbf{R}^{100}

(same problem as page 9.14)

• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

Convex Optimization

Example in \mathbf{R}^{10000}

(with sparse a_i)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- convex $f : \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \mathbf{dom} f$
- ► $f : \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \mathbf{dom} f$, $v \in \mathbf{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x \log x$

affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}^{\prime\prime\prime}(y)=a^3f^{\prime\prime\prime}(ay+b),\qquad \tilde{f}^{\prime\prime}(y)=a^2f^{\prime\prime}(ay+b)$$

Convex Optimization

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \ge 1$, and sum
- preserved under composition with affine function
- if g is convex with dom $g = \mathbf{R}_{++}$ and $|g'''(x)| \le 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

•
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$
 on $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$
• $f(X) = -\log \det X$ on \mathbf{S}_{++}^n
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Convex Optimization

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

• if $\lambda(x) > \eta$, then

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• if $\lambda(x) \leq \eta$, then

$$2\lambda(x^{(k+1)}) \le \left(2\lambda(x^{(k)})\right)^2$$

(η and γ only depend on backtracking parameters α , β)

complexity bound: number of Newton iterations bounded by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(1/\epsilon)$$

for $\alpha = 0.1, \beta = 0.8, \epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^{\star}) + 6$

Convex Optimization

Numerical example

150 randomly generated instances of

bound of the form $c(f(x^{(0)}) - p^*) + 6$ with smaller c (empirically) valid

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = -g$$

where $H = \nabla^2 f(x)$, $g = \nabla f(x)$

via Cholesky factorization

$$H = LL^{T}, \qquad \Delta x_{\rm nt} = -L^{-T}L^{-1}g, \qquad \lambda(x) = \|L^{-1}g\|_{2}$$

- cost $(1/3)n^3$ flops for unstructured system
- $cost \ll (1/3)n^3$ if *H* sparse, banded

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

• assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$

► *D* diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form *H*, solve via dense Cholesky factorization: (cost $(1/3)n^3$) **method 2** (page **??**): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute *w* and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1}g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^T A D^{-1} A^T L_0$)

Convex Optimization