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Unconstrained minimization

▶ unconstrained minimization problem

minimize f (x)

▶ we assume
– f convex, twice continuously differentiable (hence dom f open)
– optimal value p★ = infx f (x) is attained at x★ (not necessarily unique)

▶ optimality condition is ∇f (x) = 0

▶ minimizing f is the same as solving ∇f (x) = 0

▶ a set of n equations with n unknowns
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Quadratic functions

▶ convex quadratic: f (x) = (1/2)xTPx + qTx + r, P ⪰ 0

▶ we can solve exactly via linear equations

∇f (x) = Px + q = 0

▶ much more on this special case later
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Iterative methods

▶ for most non-quadratic functions, we use iterative methods

▶ these produce a sequence of points x(k) ∈ dom f , k = 0, 1, . . .

▶ x(0) is the initial point or starting point

▶ x(k) is the kth iterate

▶ we hope that the method converges, i.e.,

f (x(k) ) → p★, ∇f (x(k) ) → 0
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Initial point and sublevel set

▶ algorithms in this chapter require a starting point x(0) such that
– x(0) ∈ dom f
– sublevel set S = {x | f (x) ≤ f (x(0) )} is closed

▶ 2nd condition is hard to verify, except when all sublevel sets are closed
– equivalent to condition that epi f is closed
– true if dom f = Rn

– true if f (x) → ∞ as x → bd dom f

▶ examples of differentiable functions with closed sublevel sets:

f (x) = log

(
m∑︁

i=1
exp(aT

i x + bi)
)
, f (x) = −

m∑︁
i=1

log(bi − aT
i x)
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Strong convexity and implications

▶ f is strongly convex on S if there exists an m > 0 such that

∇2f (x) ⪰ mI for all x ∈ S

▶ same as f (x) − (m/2)∥x∥2
2 is convex

▶ if f is strongly convex, for x, y ∈ S,

f (y) ≥ f (x) + ∇f (x)T (y − x) + m
2
∥x − y∥2

2

▶ hence, S is bounded
▶ we conclude p★ > −∞, and for x ∈ S,

f (x) − p★ ≤ 1
2m

∥∇f (x)∥2
2

▶ useful as stopping criterion (if you know m, which usually you do not)
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Descent methods

▶ descent methods generate iterates as

x(k+1) = x(k) + t (k)Δx(k)

with f (x(k+1) ) < f (x(k) ) (hence the name)

▶ other notations: x+ = x + tΔx, x := x + tΔx

▶ Δx(k) is the step, or search direction

▶ t (k) > 0 is the step size, or step length

▶ from convexity, f (x+) < f (x) implies ∇f (x)TΔx < 0

▶ this means Δx is a descent direction
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Generic descent method

General descent method.
given a starting point x ∈ dom f .
repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size t > 0.
3. Update. x := x + tΔx.

until stopping criterion is satisfied.
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Line search types

▶ exact line search: t = argmint>0 f (x + tΔx)

▶ backtracking line search (with parameters 𝛼 ∈ (0, 1/2), 𝛽 ∈ (0, 1))
– starting at t = 1, repeat t := 𝛽t until f (x + tΔx) < f (x) + 𝛼t∇f (x)TΔx

▶ graphical interpretation: reduce t (i.e., backtrack) until t ≤ t0

t

f (x + tΔx)

t = 0 t0

f (x) + Ut∇f (x)TΔxf (x) + t∇f (x)TΔx
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Gradient descent method
▶ general descent method with Δx = −∇f (x)

given a starting point x ∈ dom f .
repeat

1. Δx := −∇f (x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tΔx.

until stopping criterion is satisfied.

▶ stopping criterion usually of the form ∥∇f (x)∥2 ≤ 𝜖

▶ convergence result: for strongly convex f ,

f (x(k) ) − p★ ≤ ck (f (x(0) ) − p★)

c ∈ (0, 1) depends on m, x(0) , line search type
▶ very simple, but can be very slow
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Example: Quadratic function on R2

▶ take f (x) = (1/2) (x2
1 + 𝛾x2

2), with 𝛾 > 0
▶ with exact line search, starting at x(0) = (𝛾, 1):

x(k)1 = 𝛾

(
𝛾 − 1
𝛾 + 1

)k
, x(k)2 =

(
−𝛾 − 1
𝛾 + 1

)k

– very slow if 𝛾 ≫ 1 or 𝛾 ≪ 1

– example for 𝛾 = 10 at right
– called zig-zagging

x1
x
2

x
(0)

x
(1)

−10 0 10

−4

0

4
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Example: Nonquadratic function on R2

▶ f (x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x
(0)

x
(1)

x
(2)

x
(0)

x
(1)

backtracking line search exact line search
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Example: A problem in R100

▶ f (x) = cTx − ∑500
i=1 log(bi − aT

i x)

k

f
(x

(k
)
)
−

p
★

exact l.s.

backtracking l.s.

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

▶ linear convergence, i.e., a straight line on a semilog plot
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Steepest descent method

▶ normalized steepest descent direction (at x, for norm ∥ · ∥):

Δxnsd = argmin{∇f (x)Tv | ∥v∥ = 1}

▶ interpretation: for small v, f (x + v) ≈ f (x) + ∇f (x)Tv;

▶ direction Δxnsd is unit-norm step with most negative directional derivative

▶ (unnormalized) steepest descent direction: Δxsd = ∥∇f (x)∥∗Δxnsd

▶ satisfies ∇f (x)TΔxsd = −∥∇f (x)∥2
∗

▶ steepest descent method
– general descent method with Δx = Δxsd
– convergence properties similar to gradient descent
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Examples

▶ Euclidean norm: Δxsd = −∇f (x)
▶ quadratic norm ∥x∥P = (xTPx)1/2 (P ∈ Sn

++): Δxsd = −P−1∇f (x)
▶ ℓ1-norm: Δxsd = −(𝜕f (x)/𝜕xi)ei, where |𝜕f (x)/𝜕xi | = ∥∇f (x)∥∞
▶ unit balls, normalized steepest descent directions for quadratic norm and ℓ1-norm:

−∇f (x)

Δxnsd

−∇f (x)
Δxnsd
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Choice of norm for steepest descent

x
(0)

x
(1)

x
(2)

x
(0)

x
(1)

x
(2)

▶ steepest descent with backtracking line search for two quadratic norms
▶ ellipses show {x | ∥x − x(k) ∥P = 1}
▶ interpretation of steepest descent with quadratic norm ∥ · ∥P: gradient descent after change

of variables x̄ = P1/2x
▶ shows choice of P has strong effect on speed of convergence
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Newton step

▶ Newton step is Δxnt = −∇2f (x)−1∇f (x)

▶ interpretation: x + Δxnt minimizes second order approximation

f̂ (x + v) = f (x) + ∇f (x)Tv + 1
2

vT∇2f (x)v

f

f̂

(x, f (x))

(x + Δxnt, f (x + Δxnt))
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Another intrepretation

▶ x + Δxnt solves linearized optimality condition

∇f (x + v) ≈ ∇̂f (x + v) = ∇f (x) + ∇2f (x)v = 0

f ′

f̂ ′

(x, f ′ (x))

(x + Δxnt, f
′ (x + Δxnt))
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And one more interpretation

▶ Δxnt is steepest descent direction at x in local Hessian norm ∥u∥∇2f (x) =
(
uT∇2f (x)u

)1/2

x

x + Δxnt

x + Δxnsd

▶ dashed lines are contour lines of f ; ellipse is {x + v | vT∇2f (x)v = 1}
▶ arrow shows −∇f (x)
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Newton decrement

▶ Newton decrement is 𝜆(x) =
(
∇f (x)T∇2f (x)−1∇f (x)

)1/2

▶ a measure of the proximity of x to x★

▶ gives an estimate of f (x) − p★, using quadratic approximation f̂ :

f (x) − inf
y

f̂ (y) = 1
2
𝜆(x)2

▶ equal to the norm of the Newton step in the quadratic Hessian norm

𝜆(x) =
(
ΔxT

nt∇2f (x)Δxnt

)1/2

▶ directional derivative in the Newton direction: ∇f (x)TΔxnt = −𝜆(x)2

▶ affine invariant (unlike ∥∇f (x)∥2)
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Newton’s method

given a starting point x ∈ dom f , tolerance 𝜖 > 0.
repeat

1. Compute the Newton step and decrement.
Δxnt := −∇2f (x)−1∇f (x); 𝜆2 := ∇f (x)T∇2f (x)−1∇f (x).

2. Stopping criterion. quit if 𝜆2/2 ≤ 𝜖 .
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tΔxnt.

▶ affine invariant, i.e., independent of linear changes of coordinates
▶ Newton iterates for f̃ (y) = f (Ty) with starting point y(0) = T−1x(0) are y(k) = T−1x(k)
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Classical convergence analysis

assumptions
▶ f strongly convex on S with constant m
▶ ∇2f is Lipschitz continuous on S, with constant L > 0:

∥∇2f (x) − ∇2f (y)∥2 ≤ L∥x − y∥2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants 𝜂 ∈ (0,m2/L), 𝛾 > 0 such that
▶ if ∥∇f (x)∥2 ≥ 𝜂, then f (x(k+1) ) − f (x(k) ) ≤ −𝛾
▶ if ∥∇f (x)∥2 < 𝜂, then

L
2m2 ∥∇f (x(k+1) )∥2 ≤

(
L

2m2 ∥∇f (x(k) )∥2

)2
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Classical convergence analysis

damped Newton phase (∥∇f (x)∥2 ≥ 𝜂)
▶ most iterations require backtracking steps
▶ function value decreases by at least 𝛾
▶ if p★ > −∞, this phase ends after at most (f (x(0) ) − p★)/𝛾 iterations

quadratically convergent phase (∥∇f (x)∥2 < 𝜂)
▶ all iterations use step size t = 1
▶ ∥∇f (x)∥2 converges to zero quadratically: if ∥∇f (x(k) )∥2 < 𝜂, then

L
2m2 ∥∇f (xl)∥2 ≤

(
L

2m2 ∥∇f (xk)∥2

)2l−k

≤
(

1
2

)2l−k

, l ≥ k
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conclusion: number of iterations until f (x) − p★ ≤ 𝜖 is bounded above by

f (x(0) ) − p★

𝛾
+ log2 log2 (𝜖0/𝜖)

▶ 𝛾, 𝜖0 are constants that depend on m, L, x(0)

▶ second term is small (of the order of 6) and almost constant for practical purposes
▶ in practice, constants m, L (hence 𝛾, 𝜖0) are usually unknown
▶ provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
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Example: R2

(same problem as slide 9.13)

x
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▶ backtracking parameters 𝛼 = 0.1, 𝛽 = 0.7
▶ converges in only 5 steps
▶ quadratic local convergence
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Example in R100

(same problem as page 9.14)

k

f
(x

(k
)
)
−

p
★

exact line search

backtracking
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2

▶ backtracking parameters 𝛼 = 0.01, 𝛽 = 0.5
▶ backtracking line search almost as fast as exact l.s. (and much simpler)
▶ clearly shows two phases in algorithm
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Example in R10000

(with sparse ai)

f (x) = −
10000∑︁

i=1
log(1 − x2

i ) −
100000∑︁

i=1
log(bi − aT

i x)

k

f
(x

(k
)
)
−

p
★

0 5 10 15 20

10
−5

10
0

10
5

▶ backtracking parameters 𝛼 = 0.01, 𝛽 = 0.5.
▶ performance similar as for small examples
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Self-concordance

shortcomings of classical convergence analysis
▶ depends on unknown constants (m, L, . . . )
▶ bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)
▶ does not depend on any unknown constants
▶ gives affine-invariant bound
▶ applies to special class of convex functions (‘self-concordant’ functions)
▶ developed to analyze polynomial-time interior-point methods for convex optimization
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Self-concordant functions

definition
▶ convex f : R → R is self-concordant if |f ′′′ (x) | ≤ 2f ′′ (x)3/2 for all x ∈ dom f
▶ f : Rn → R is self-concordant if g(t) = f (x + tv) is self-concordant for all x ∈ dom f , v ∈ Rn

examples on R
▶ linear and quadratic functions
▶ negative logarithm f (x) = − log x
▶ negative entropy plus negative logarithm: f (x) = x log x − log x

affine invariance: if f : R → R is s.c., then f̃ (y) = f (ay + b) is s.c.:

f̃ ′′′ (y) = a3f ′′′ (ay + b), f̃ ′′ (y) = a2f ′′ (ay + b)
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Self-concordant calculus

properties
▶ preserved under positive scaling 𝛼 ≥ 1, and sum
▶ preserved under composition with affine function
▶ if g is convex with dom g = R++ and |g′′′ (x) | ≤ 3g′′ (x)/x then

f (x) = log(−g(x)) − log x

is self-concordant

examples: properties can be used to show that the following are s.c.
▶ f (x) = −∑m

i=1 log(bi − aT
i x) on {x | aT

i x < bi, i = 1, . . . ,m}
▶ f (X) = − log det X on Sn

++
▶ f (x) = − log(y2 − xTx) on {(x, y) | ∥x∥2 < y}
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Convergence analysis for self-concordant functions

summary: there exist constants 𝜂 ∈ (0, 1/4], 𝛾 > 0 such that
▶ if 𝜆(x) > 𝜂, then

f (x(k+1) ) − f (x(k) ) ≤ −𝛾
▶ if 𝜆(x) ≤ 𝜂, then

2𝜆(x(k+1) ) ≤
(
2𝜆(x(k) )

)2

(𝜂 and 𝛾 only depend on backtracking parameters 𝛼, 𝛽)

complexity bound: number of Newton iterations bounded by

f (x(0) ) − p★

𝛾
+ log2 log2 (1/𝜖)

for 𝛼 = 0.1, 𝛽 = 0.8, 𝜖 = 10−10, bound evaluates to 375(f (x(0) ) − p★) + 6
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Numerical example
150 randomly generated instances of

minimize f (x) = −∑m
i=1 log(bi − aT

i x)

◦: m = 100, n = 50
□: m = 1000, n = 500
^: m = 1000, n = 50

f (x(0) ) − p★

it
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▶ number of iterations much smaller than 375(f (x(0) ) − p★) + 6
▶ bound of the form c(f (x(0) ) − p★) + 6 with smaller c (empirically) valid
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

HΔx = −g

where H = ∇2f (x), g = ∇f (x)

via Cholesky factorization

H = LLT , Δxnt = −L−TL−1g, 𝜆(x) = ∥L−1g∥2

▶ cost (1/3)n3 flops for unstructured system
▶ cost ≪ (1/3)n3 if H sparse, banded
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example of dense Newton system with structure

f (x) =
n∑︁

i=1
𝜓i (xi) + 𝜓0 (Ax + b), H = D + ATH0A

▶ assume A ∈ Rp×n, dense, with p ≪ n
▶ D diagonal with diagonal elements 𝜓′′

i (xi); H0 = ∇2𝜓0 (Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)
method 2 (page ??): factor H0 = L0LT

0 ; write Newton system as

DΔx + ATL0w = −g, LT
0 AΔx − w = 0

eliminate Δx from first equation; compute w and Δx from

(I + LT
0 AD−1ATL0)w = −LT

0 AD−1g, DΔx = −g − ATL0w

cost: 2p2n (dominated by computation of LT
0 AD−1ATL0)
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