# **Stochastic programming**

- stochastic programming
- 'certainty equivalent' problem
- violation/shortfall constraints and penalties
- Monte Carlo sampling methods
- validation

sources: Nemirovsky & Shapiro

## **Stochastic programming**

- objective and constraint functions  $f_i(x,\omega)$  depend on optimization variable x and a random variable  $\omega$
- $\bullet \omega$  models
  - parameter variation and uncertainty
  - random variation in implementation, manufacture, operation
- ullet value of  $\omega$  is not known, but its distribution is
- goal: choose x so that
  - constraints are satisfied on average, or with high probability
  - objective is small on average, or with high probability

## Stochastic programming

• basic stochastic programming problem:

minimize 
$$F_0(x) = \mathbf{E} f_0(x, \omega)$$
  
subject to  $F_i(x) = \mathbf{E} f_i(x, \omega) \le 0, \quad i = 1, \dots, m$ 

- variable is x
- problem data are  $f_i$ , distribution of  $\omega$
- if  $f_i(x,\omega)$  are convex in x for each  $\omega$ 
  - $F_i$  are convex
  - hence stochastic programming problem is convex
- $F_i$  have analytical expressions in only a few cases; in other cases we will solve the problem approximately

# Example with analytic form for $F_i$

- $f(x) = ||Ax b||_2^2$ , with A, b random
- $F(x) = \mathbf{E} f(x) = x^T P x 2q^T x + r$ , where

$$P = \mathbf{E}(A^T A), \quad q = \mathbf{E}(A^T b), \quad r = \mathbf{E}(\|b\|_2^2)$$

- ullet only need second moments of (A,b)
- $\bullet$  stochastic constraint  $\mathbf{E}\, f(x) \leq 0$  can be expressed as standard quadratic inequality

## 'Certainty-equivalent' problem

• 'certainty-equivalent' (a.k.a. 'mean field') problem:

minimize 
$$f_0(x, \mathbf{E}\omega)$$
  
subject to  $f_i(x, \mathbf{E}\omega) \leq 0, \quad i = 1, \dots, m$ 

- roughly speaking: ignore parameter variation
- if  $f_i$  convex in  $\omega$  for each x, then
  - $-f_i(x, \mathbf{E}\,\omega) \leq \mathbf{E}\,f_i(x,\omega)$
  - so optimal value of certainty-equivalent problem is lower bound on optimal value of stochastic problem

### Stochastic programming example

- minimize  $\mathbf{E} \|Ax b\|_1$ ;  $A_{ij}$  uniform on  $\bar{A}_{ij} \pm \gamma_{ij}$ ;  $b_i$  uniform on  $\bar{b}_i \pm \delta_i$
- objective PDFs for stochastic optimal and certainty-equivalent solutions
- lower bound from CE problem: 5.96



# **Expected violation/shortfall constraints/penalties**

- replace  $\mathbf{E} f_i(x,\omega) \leq 0$  with
  - $-\mathbf{E} f_i(x,\omega)_+ \leq \epsilon$  (LHS is expected violation)
  - $\mathbf{E}(\max_i f_i(x,\omega)_+) \le \epsilon$  (LHS is expected worst violation)
- variation: add violation/shortfall penalty to objective

minimize 
$$\mathbf{E}\left(f_0(x,\omega) + \sum_{i=1}^m c_i f_i(x,\omega)_+\right)$$

where  $c_i > 0$  are penalty rates for violating constraints

ullet these are convex problems if  $f_i$  are convex in x

### Chance constraints and percentile optimization

• 'chance constraints' ( $\eta$  is 'confidence level'):

$$\mathbf{Prob}(f_i(x,\omega) \leq 0) \geq \eta$$

- convex in some cases
- generally interested in  $\eta = 0.9, 0.95, 0.99$
- $-\eta = 0.999$  meaningless (unless you're sure about the distribution tails)
- percentile optimization ( $\gamma$  is ' $\eta$ -percentile'):

minimize 
$$\gamma$$
 subject to  $\mathbf{Prob}(f_0(x,\omega) \leq \gamma) \geq \eta$ 

- convex or quasi-convex in some cases
- these topics covered next lecture

## Solving stochastic programming problems

- ullet analytical solution in special cases, e.g., when expectations can be found analytically
  - $\omega$  enters quadratically in  $f_i$
  - $\omega$  takes on finitely many values
- general case: approximate solution via (Monte Carlo) sampling

#### Finite event set

- suppose  $\omega \in \{\omega_1, \dots, \omega_N\}$ , with  $\pi_j = \mathbf{Prob}(\omega = \omega_j)$
- ullet sometime called 'scenarios'; often we have  $\pi_j=1/N$
- stochastic programming problem becomes

minimize 
$$F_0(x) = \sum_{j=1}^N \pi_j f_0(x, \omega_j)$$
  
subject to  $F_i(x) = \sum_{j=1}^N \pi_j f_i(x, \omega_j) \le 0, \quad i = 1, \dots, m$ 

- a (standard) convex problem if  $f_i$  convex in x
- ullet computational complexity grows *linearly* in the number of scenarios N

## Monte Carlo sampling method

- a general method for (approximately) solving stochastic programming problem
- generate N samples (realizations)  $\omega_1, \ldots, \omega_N$ , with associated probabilities  $\pi_1, \ldots, \pi_N$  (usually  $\pi_j = 1/N$ )
- form sample average approximations

$$\hat{F}_i(x) = \sum_{j=1}^N \pi_j f_i(x, \omega_j), \quad i = 0, \dots, m$$

• these are RVs (via  $\omega_1, \ldots, \omega_N$ ) with mean  $\mathbf{E} f_i(x, \omega) = F_i(x)$ 

now solve finite event problem

minimize 
$$\hat{F}_0(x)$$
  
subject to  $\hat{F}_i(x) \leq 0, \quad i = 1, \dots, m$ 

- solution  $x_{\text{mcs}}^{\star}$  and optimal value  $\hat{F}_0(x_{\text{mcs}}^{\star})$  are random variables (hopefully close to  $x^{\star}$  and  $p^{\star}$ , optimal value of original problem)
- theory says
  - (with some technical conditions) as  $N \to \infty$ ,  $x_{\text{mcs}}^{\star} \to x^{\star}$
  - $-\mathbf{E}\,\hat{F}_0(x_{\mathrm{mcs}}^{\star}) \le p^{\star}$

### **Out-of-sample validation**

- ullet a practical method to check if N is 'large enough'
- use a second set of samples ('validation set')  $\omega_1^{\mathrm{val}}, \ldots, \omega_M^{\mathrm{val}}$ , with probabilities  $\pi_1^{\mathrm{val}}, \ldots, \pi_M^{\mathrm{val}}$  (usually  $M \gg N$ ) (original set of samples called 'training set')
- evaluate

$$\hat{F}_i^{\text{val}}(x_{\text{mcs}}^{\star}) = \sum_{j=1}^{M} \pi_j^{\text{val}} f_i(x_{\text{mcs}}^{\star}, \omega_j^{\text{val}}), \quad i = 0, \dots, m$$

- if  $\hat{F}_i(x_{\text{mcs}}^{\star}) \approx \hat{F}_i^{\text{val}}(x_{\text{mcs}}^{\star})$ , our confidence that  $x_{\text{mcs}}^{\star} \approx x^{\star}$  is enhanced
- ullet if not, increase N and re-compute  $x_{
  m mcs}^{\star}$

### **Example**

we consider problem

minimize 
$$F_0(x) = \mathbf{E} \max_i (Ax + b)_i$$
  
subject to  $F_1(x) = \mathbf{E} \max_i (Cx + d)_i \le 0$ 

with optimization variable  $x \in \mathbf{R}^n$ 

$$A \in \mathbf{R}^{m \times n}$$
,  $b \in \mathbf{R}^m$ ,  $C \in \mathbf{R}^{k \times n}$ ,  $d \in \mathbf{R}^k$  are random

- we consider instance with n=10, m=20, k=5
- certainty-equivalent optimal value yields lower bound 19.1
- we use Monte Carlo sampling with  $N=10,\ 100,\ 1000$
- validation set uses M = 10000

|                                     | N = 10 | N = 100 | N = 1000 |
|-------------------------------------|--------|---------|----------|
| $F_0$ (training)                    | 51.8   | 54.0    | 55.4     |
| $F_0$ (validation)                  | 56.0   | 54.8    | 55.2     |
| $\overline{F_1 \text{ (training)}}$ | 0      | 0       | 0        |
| $F_1$ (validation)                  | 1.3    | 0.7     | -0.03    |

#### we conclude:

- $\bullet$  N=10 is too few samples
- $\bullet$  N=100 is better, but not enough
- $\bullet$  N=1000 is probably fine

## Production planning with uncertain demand

- manufacture quantities  $q=(q_1,\ldots,q_m)$  of m finished products
- purchase raw materials in quantities  $r = (r_1, \dots, r_n)$  with costs  $c = (c_1, \dots, c_n)$ , so total cost is  $c^T r$
- $\bullet$  manufacturing process requires  $r \succeq Aq$   $A_{ij} \mbox{ is amount of raw material } i \mbox{ needed per unit of finished product } j$
- product demand  $d=(d_1,\ldots,d_m)$  is random, with known distribution
- product prices are  $p = (p_1, \dots, p_m)$ , so total revenue is  $p^T \min(d, q)$
- maximize (expected) net revenue (over optimization variables q, r):

$$\begin{aligned} & \mathbf{E}\, p^T \min(d,q) - c^T r \\ & \text{subject to} & & r \succeq Aq, \quad q \succeq 0, \quad r \succeq 0 \end{aligned}$$

#### **Problem instance**

- ullet problem instance has n=10, m=5, d log-normal
- certainty-equivalent problem yields upper bound 170.7
- ullet we use Monte Carlo sampling with N=2000 training samples
- ullet validated with M=10000 validation samples

|                     | $F_0$ |
|---------------------|-------|
| training            | 155.7 |
| validation          | 155.1 |
| CE (using $ar{d}$ ) | 170.7 |
| CE validation       | 141.1 |



## Minimum average loss prediction

- $(x,y) \in \mathbf{R}^n \times \mathbf{R}$  have some joint distribution
- ullet find weight vector  $w \in \mathbf{R}^n$  for which  $w^Tx$  is a good estimator of y
- ullet choose w to minimize expected value of a convex loss function l

$$J(w) = \mathbf{E}\,l(w^T x - y)$$

- $-l(u) = u^2$ : mean-square error
- -l(u) = |u|: mean-absolute error
- we do not know joint distribution, but we have independent samples ('training data')

$$(x_i, y_i), \quad i = 1, \dots, N$$

• Monte Carlo sampling method (called training): choose w to minimize sample average loss

$$w_{\text{sa}} = \underset{w}{\operatorname{argmin}} \left( \frac{1}{N} \sum_{i=1}^{N} l(w^{T} x_{i} - y_{i}) \right)$$

with associated sample average loss  $J_{
m sa}$ 

• validate predictor  $y \approx w_{\mathrm{sa}}^T x$  on a different set of M samples:

$$J_{\text{val}} = \frac{1}{M} \sum_{i=1}^{M} l(w_{\text{sa}}^T x_i^{\text{val}} - y_i^{\text{val}})$$

ullet if  $J_{\mathrm{sa}} pprox J_{\mathrm{val}}$  (and M is large enough), we say predictor *generalizes* 

# **Example**

- n = 10; N = 1000 training samples; M = 10000 validation samples
- $l(u) = (u)_+ + 4(u)_-$  (under-predicting  $4 \times$  more expensive) training set prediction errors



