
Stochastic programming

• stochastic programming

• ’certainty equivalent’ problem

• violation/shortfall constraints and penalties

• Monte Carlo sampling methods

• validation

sources: Nemirovsky & Shapiro

EE364A — Stochastic Programming 1



Stochastic programming

• objective and constraint functions fi(x, ω) depend on optimization
variable x and a random variable ω

• ω models

– parameter variation and uncertainty
– random variation in implementation, manufacture, operation

• value of ω is not known, but its distribution is

• goal: choose x so that

– constraints are satisfied on average, or with high probability
– objective is small on average, or with high probability
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Stochastic programming

• basic stochastic programming problem:

minimize F0(x) = E f0(x, ω)
subject to Fi(x) = E fi(x, ω) ≤ 0, i = 1, . . . ,m

– variable is x
– problem data are fi, distribution of ω

• if fi(x, ω) are convex in x for each ω

– Fi are convex
– hence stochastic programming problem is convex

• Fi have analytical expressions in only a few cases;
in other cases we will solve the problem approximately
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Example with analytic form for Fi

• f(x) = ‖Ax− b‖22, with A, b random

• F (x) = E f(x) = xTPx− 2qTx+ r, where

P = E(ATA), q = E(AT b), r = E(‖b‖22)

• only need second moments of (A, b)

• stochastic constraint E f(x) ≤ 0 can be expressed as standard
quadratic inequality
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‘Certainty-equivalent’ problem

• ‘certainty-equivalent’ (a.k.a. ‘mean field’) problem:

minimize f0(x,Eω)
subject to fi(x,Eω) ≤ 0, i = 1, . . . ,m

• roughly speaking: ignore parameter variation

• if fi convex in ω for each x, then

– fi(x,Eω) ≤ E fi(x, ω)
– so optimal value of certainty-equivalent problem is lower bound on

optimal value of stochastic problem
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Stochastic programming example

• minimize E ‖Ax− b‖1; Aij uniform on Āij ± γij; bi uniform on b̄i ± δi

• objective PDFs for stochastic optimal and certainty-equivalent solutions

• lower bound from CE problem: 5.96
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stochastic solution

certainty equivalent solution
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Expected violation/shortfall constraints/penalties

• replace E fi(x, ω) ≤ 0 with

– E fi(x, ω)+ ≤ ǫ (LHS is expected violation)
– E (maxi fi(x, ω)+) ≤ ǫ (LHS is expected worst violation)

• variation: add violation/shortfall penalty to objective

minimize E (f0(x, ω) +
∑m

i=1
cifi(x, ω)+)

where ci > 0 are penalty rates for violating constraints

• these are convex problems if fi are convex in x
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Chance constraints and percentile optimization

• ‘chance constraints’ (η is ‘confidence level’):

Prob(fi(x, ω) ≤ 0) ≥ η

– convex in some cases
– generally interested in η = 0.9, 0.95, 0.99
– η = 0.999 meaningless (unless you’re sure about the distribution tails)

• percentile optimization (γ is ‘η-percentile’):

minimize γ
subject to Prob(f0(x, ω) ≤ γ) ≥ η

– convex or quasi-convex in some cases

• these topics covered next lecture
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Solving stochastic programming problems

• analytical solution in special cases, e.g., when expectations can be
found analytically

– ω enters quadratically in fi
– ω takes on finitely many values

• general case: approximate solution via (Monte Carlo) sampling
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Finite event set

• suppose ω ∈ {ω1, . . . , ωN}, with πj = Prob(ω = ωj)

• sometime called ‘scenarios’; often we have πj = 1/N

• stochastic programming problem becomes

minimize F0(x) =
∑N

j=1
πjf0(x, ωj)

subject to Fi(x) =
∑N

j=1
πjfi(x, ωj) ≤ 0, i = 1, . . . ,m

• a (standard) convex problem if fi convex in x

• computational complexity grows linearly in the number of scenarios N
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Monte Carlo sampling method

• a general method for (approximately) solving stochastic programming
problem

• generate N samples (realizations) ω1, . . . , ωN , with associated
probabilities π1, . . . , πN (usually πj = 1/N)

• form sample average approximations

F̂i(x) =

N
∑

j=1

πjfi(x, ωj), i = 0, . . . ,m

• these are RVs (via ω1, . . . , ωN) with mean E fi(x, ω) = Fi(x)
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• now solve finite event problem

minimize F̂0(x)

subject to F̂i(x) ≤ 0, i = 1, . . . ,m

• solution x⋆
mcs and optimal value F̂0(x

⋆
mcs) are random variables

(hopefully close to x⋆ and p⋆, optimal value of original problem)

• theory says

– (with some technical conditions) as N → ∞, x⋆
mcs → x⋆

– E F̂0(x
⋆
mcs) ≤ p⋆
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Out-of-sample validation

• a practical method to check if N is ‘large enough’

• use a second set of samples (‘validation set’) ωval
1 , . . . , ωval

M , with
probabilities πval

1 , . . . , πval
M (usually M ≫ N)

(original set of samples called ‘training set’)

• evaluate

F̂ val
i (x⋆

mcs) =
M
∑

j=1

πval
j fi(x

⋆
mcs, ω

val
j ), i = 0, . . . ,m

• if F̂i(x
⋆
mcs) ≈ F̂ val

i (x⋆
mcs), our confidence that x⋆

mcs ≈ x⋆ is enhanced

• if not, increase N and re-compute x⋆
mcs
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Example

• we consider problem

minimize F0(x) = Emaxi(Ax+ b)i
subject to F1(x) = Emaxi(Cx+ d)i ≤ 0

with optimization variable x ∈ Rn

A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n, d ∈ Rk are random

• we consider instance with n = 10, m = 20, k = 5

• certainty-equivalent optimal value yields lower bound 19.1

• we use Monte Carlo sampling with N = 10, 100, 1000

• validation set uses M = 10000
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N = 10 N = 100 N = 1000
F0 (training) 51.8 54.0 55.4
F0 (validation) 56.0 54.8 55.2
F1 (training) 0 0 0
F1 (validation) 1.3 0.7 −0.03

we conclude:

• N = 10 is too few samples

• N = 100 is better, but not enough

• N = 1000 is probably fine
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Production planning with uncertain demand

• manufacture quantities q = (q1, . . . , qm) of m finished products

• purchase raw materials in quantities r = (r1, . . . , rn) with costs
c = (c1, . . . , cn), so total cost is cTr

• manufacturing process requires r � Aq

Aij is amount of raw material i needed per unit of finished product j

• product demand d = (d1, . . . , dm) is random, with known distribution

• product prices are p = (p1, . . . , pm), so total revenue is pT min(d, q)

• maximize (expected) net revenue (over optimization variables q, r):

maximize E pT min(d, q)− cTr
subject to r � Aq, q � 0, r � 0
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Problem instance

• problem instance has n = 10, m = 5, d log-normal

• certainty-equivalent problem yields upper bound 170.7

• we use Monte Carlo sampling with N = 2000 training samples

• validated with M = 10000 validation samples

F0

training 155.7
validation 155.1
CE (using d̄) 170.7
CE validation 141.1
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training set stochastic solution

validation set stochastic solution

validation set CE solution
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Minimum average loss prediction

• (x, y) ∈ Rn × R have some joint distribution

• find weight vector w ∈ Rn for which wTx is a good estimator of y

• choose w to minimize expected value of a convex loss function l

J(w) = E l(wTx− y)

– l(u) = u2: mean-square error
– l(u) = |u|: mean-absolute error

• we do not know joint distribution, but we have independent samples
(‘training data’)

(xi, yi), i = 1, . . . , N
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• Monte Carlo sampling method (called training):
choose w to minimize sample average loss

wsa = argmin
w

(

1

N

N
∑

i=1

l(wTxi − yi)

)

with associated sample average loss Jsa

• validate predictor y ≈ wT
sax on a different set of M samples:

Jval =
1

M

M
∑

i=1

l(wT
sax

val
i − yvali )

• if Jsa ≈ Jval (and M is large enough), we say predictor generalizes
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Example

• n = 10; N = 1000 training samples; M = 10000 validation samples

• l(u) = (u)+ + 4(u)− (under-predicting 4× more expensive)
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