Stochastic programming

e stochastic programming

e 'certainty equivalent’ problem

e violation/shortfall constraints and penalties
e Monte Carlo sampling methods

e validation

sources: Nemirovsky & Shapiro
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Stochastic programming

e objective and constraint functions f;(x,w) depend on optimization
variable x and a random variable w

e w models

— parameter variation and uncertainty
— random variation in implementation, manufacture, operation

e value of w is not known, but its distribution is

e goal: choose = so that

— constraints are satisfied on average, or with high probability
— objective is small on average, or with high probability
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Stochastic programming

e basic stochastic programming problem:

minimize  Fy(x) = E fo(z,w)
subject to Fi(z) =E fi(z,w) <0, i=1,....,m

— variable is z
— problem data are f;, distribution of w

o if fi(x,w) are convex in x for each w

— F; are convex
— hence stochastic programming problem is convex

e F; have analytical expressions in only a few cases;
in other cases we will solve the problem approximately

EE364A — Stochastic Programming



Example with analytic form for F;
o f(z)=|Ax — b||%, with A, b random
o '(z) =E f(x) = 2 Px — 2¢q"x + r, where

P=E(ATA), ¢=EA"), r=E(]3)

e only need second moments of (A,b)

e stochastic constraint E f(x) < 0 can be expressed as standard
quadratic inequality
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‘Certainty-equivalent’ problem

e ‘certainty-equivalent’ (a.k.a. ‘mean field’) problem:

minimize  fo(z, Ew)
subject to  fi(z,Ew) <0, 1=1,...,m

e roughly speaking: ignore parameter variation

e if f; convex in w for each z, then

- fi(z,Ew) < E fi(z,w)
— so optimal value of certainty-equivalent problem is lower bound on
optimal value of stochastic problem
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Stochastic programming example

1; A;; uniform on flij + v,;; b; uniform on b; + 5,

e minimize E ||Az — |
e objective PDFs for stochastic optimal and certainty-equivalent solutions

e lower bound from CE problem: 5.96

stochastic solution

| | |
0 2 4 6 8 10 12 14 16 18

certainty equivalent solution
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Expected violation/shortfall constraints/penalties

e replace E f;(z,w) < 0 with

— E fi(z,w)r <e (LHS is expected violation)
— E (max; fi(z,w)s) <e (LHS is expected worst violation)

e variation: add violation/shortfall penalty to objective
minimize E (fo(z,w) + > ", ¢ifi(z,w)4)
where ¢; > 0 are penalty rates for violating constraints

e these are convex problems if f; are convex in x
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Chance constraints and percentile optimization

e ‘chance constraints’ (7 is ‘confidence level’):
Prob(f;(z,w) <0) =217
— convex In some cases
— generally interested in n = 0.9, 0.95, 0.99
— 1 = 0.999 meaningless (unless you're sure about the distribution tails)

e percentile optimization (7 is ‘n-percentile’):

minimize vy
subject to Prob(fy(z,w) <~v) >n

— convex or quasi-convex in some cases

e these topics covered next lecture
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Solving stochastic programming problems

e analytical solution in special cases, e.g., when expectations can be
found analytically

— w enters quadratically in f;
— w takes on finitely many values

e general case: approximate solution via (Monte Carlo) sampling
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Finite event set

® suppose w € {wi,...,wnN}, with m; = Prob(w = w,)
e sometime called ‘scenarios’; often we have m; = 1/N

e stochastic programming problem becomes

minimize  Fy(x) = Zzzl i fo(,w;)

subject to Fz(éﬁ) = ijl iji(:r;,wj) <0, 2=1,....m

e a (standard) convex problem if f; convex in x

e computational complexity grows linearly in the number of scenarios NV
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Monte Carlo sampling method

e a general method for (approximately) solving stochastic programming
problem

e generate N samples (realizations) wy,...,wy, with associated
probabilities 71, ..., mx (usually 7; = 1/N)

e form sample average approximations

N
Fy(z) = ijfi(:v,wj), i=0,...,m
j=1

e these are RVs (via wy,...,wy) with mean E f;(z,w) = F;(x)
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e now solve finite event problem

minimize  Fy(x)
subject to F;(z) <0, i=1,...,m

e solution z7 .. and optimal value Fy(x} ..) are random variables

(hopefully close to * and p*, optimal value of original problem)

e theory says

— (with some technical conditions) as N — oo, x% .. — x*
= EFo(2],e) < p°
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Out-of-sample validation

a practical method to check if N is ‘large enough’

use a second set of samples (‘validation set’) wy?, ... w¥¥, with
probabilities 772, ... w3 (usually M > N)

(original set of samples called ‘training set’)

evaluate
val val Val -
F Tr o) g u filxl s wi™), 1=0,....m

A

if Fy(x Fyel(x

mcs) mcs)

if not, increase N and re-compute z7} .
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Example

e we consider problem

minimize  Fy(x) = Emax,;(Ax + b);
subject to Fi(x) = Emax;(Cx +d); <0

with optimization variable x € R"

AER™™ beR™, CeR"™, decR" are random
e we consider instance with n =10, m =20, k=5
e certainty-equivalent optimal value yields lower bound 19.1
e we use Monte Carlo sampling with N = 10, 100, 1000

e validation set uses M = 10000
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N =10 | N =100 | N =1000
Fy (training) 51.8 54.0 55.4
Fy (validation) 56.0 54.8 55.2
Fy (training) 0 0 0
Fy (validation) 1.3 0.7 —0.03

we conclude:

e N =10 is too few samples

e N = 100 is better, but not enough

e N = 1000 is probably fine
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Production planning with uncertain demand

e manufacture quantities ¢ = (q1, . .., ¢mn) of m finished products
e purchase raw materials in quantities r = (rq,...,r,) with costs
c=(ci,...,c,), so total cost is cl'r

e manufacturing process requires r = Aq

A;; is amount of raw material ¢ needed per unit of finished product j
e product demand d = (dy,...,d,,) is random, with known distribution
e product prices are p = (p1,...,pm), so total revenue is p! min(d, q)

e maximize (expected) net revenue (over optimization variables ¢, 7):

maximize Ep! min(d, q) — c¢!r
subjectto r>Aq, ¢q>=0, r>=0
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Problem instance

e problem instance has n = 10, m = 5, d log-normal
e certainty-equivalent problem yields upper bound 170.7
e we use Monte Carlo sampling with N = 2000 training samples

e validated with M = 10000 validation samples

Fo
training 155.7
validation 155.1

CE (using d) | 170.7
CE validation | 141.1
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training set stochastic solution

100 150 200 250 300
validation set stochastic solution
T T T T
100 150 200 250 300
validation set CE solution
T T T T
| |
100 150 200 250 300
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Minimum average loss prediction

e (z,y) € R" X R have some joint distribution

e find weight vector w € R" for which w’'z is a good estimator of y

e choose w to minimize expected value of a convex loss function [
J(w) = El(w'z —y)

— I(u) = u®: mean-square error
— I(u) = |u|: mean-absolute error

e we do not know joint distribution, but we have independent samples
(‘training data’)
(xi,yz-), ’LIl,,N
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e Monte Carlo sampling method (called training):
choose w to minimize sample average loss

Wea —argmm Zl whz; — ;)

with associated sample average loss Jg,

e validate predictor y ~ wl x on a different set of M samples:
T . val 1
Val — Zl Wgad Za ;/a )
o if Jsu =~ Jya (and M is large enough), we say predictor generalizes
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Example

e n =10; N = 1000 training samples; M = 10000 validation samples

e [(u) = (u)r 4+ 4(u)_ (under-predicting 4x more expensive)
training set prediction errors
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