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Maximum likelihood estimation

▶ parametric distribution estimation: choose from a family of densities px (y), indexed by a
parameter x (often denoted 𝜃)

▶ we take px (y) = 0 for invalid values of x
▶ px (y), as a function of x, is called likelihood function
▶ l(x) = log px (y), as a function of x, is called log-likelihood function

▶ maximum likelihood estimation (MLE): choose x to maximize px (y) (or l(x))
▶ a convex optimization problem if log px (y) is concave in x for fixed y
▶ not the same as log px (y) concave in y for fixed x, i.e., px (y) is a family of log-concave

densities
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Linear measurements with IID noise

linear measurement model
yi = aT

i x + vi, i = 1, . . . ,m

▶ x ∈ Rn is vector of unknown parameters
▶ vi is IID measurement noise, with density p(z)
▶ yi is measurement: y ∈ Rm has density px (y) =

∏m
i=1 p(yi − aT

i x)

maximum likelihood estimate: any solution x of

maximize l(x) = ∑m
i=1 log p(yi − aT

i x)

(y is observed value)
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Examples
▶ Gaussian noise N(0, 𝜎2): p(z) = (2𝜋𝜎2)−1/2e−z2/(2𝜎2 ) ,

l(x) = −m
2

log(2𝜋𝜎2) − 1
2𝜎2

m∑︁
i=1

(aT
i x − yi)2

ML estimate is least-squares solution
▶ Laplacian noise: p(z) = (1/(2a))e−|z |/a,

l(x) = −m log(2a) − 1
a

m∑︁
i=1

|aT
i x − yi |

ML estimate is ℓ1-norm solution
▶ uniform noise on [−a, a]:

l(x) =
{
−m log(2a) |aT

i x − yi | ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aT
i x − yi | ≤ a

Convex Optimization Boyd and Vandenberghe 7.4



Logistic regression
▶ random variable y ∈ {0, 1} with distribution

p = prob(y = 1) = exp(aTu + b)
1 + exp(aTu + b)

▶ a, b are parameters; u ∈ Rn are (observable) explanatory variables
▶ estimation problem: estimate a, b from m observations (ui, yi)
▶ log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

(
k∏

i=1

exp(aTui + b)
1 + exp(aTui + b)

m∏
i=k+1

1
1 + exp(aTui + b)

)
=

k∑︁
i=1

(aTui + b) −
m∑︁

i=1
log(1 + exp(aTui + b))

concave in a, b
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Example
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▶ n = 1, m = 50 measurements; circles show points (ui, yi)
▶ solid curve is ML estimate of p = exp(au + b)/(1 + exp(au + b))
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Gaussian covariance estimation

▶ fit Gaussian distribution N(0, Σ) to observed data y1, . . . , yN

▶ log-likelihood is

l(Σ) =
1
2

N∑︁
k=1

(
−2𝜋n − log detΣ − yTΣ−1y

)
=

N
2

(
−2𝜋n − log detΣ − trΣ−1Y

)
with Y = (1/N)∑N

k=1 ykyT
k , the empirical covariance

▶ l is not concave in Σ (the log detΣ term has the wrong sign)

▶ with no constraints or regularization, MLE is empirical covariance Σml = Y
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Change of variables

▶ change variables to S = Σ−1

▶ recover original parameter via Σ = S−1

▶ S is the natural parameter in an exponential family description of a Gaussian

▶ in terms of S, log-likelihood is

l(S) = N
2
(−2𝜋n + log det S − tr SY)

which is concave

▶ (a similar trick can be used to handle nonzero mean)
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Fitting a sparse inverse covariance

▶ S is the precision matrix of the Gaussian

▶ Sij = 0 means that yi and yj are independent, conditioned on yk, k ≠ i, j

▶ sparse S means
– many pairs of components are conditionally independent, given the others
– y is described by a sparse (Gaussian) Bayes network

▶ to fit data with S sparse, minimize convex function

− log det S + tr SY + 𝜆
∑︁
i≠j

|Sij |

over S ∈ Sn, with hyper-parameter 𝜆 ≥ 0
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Example

▶ example with n = 4, N = 10 samples generated from a sparse Strue

Strue =


1 0 0.5 0
0 1 0 0.1

0.5 0 1 0.3
0 0.1 0.3 1


▶ empirical and sparse estimate values of Σ−1 (with 𝜆 = 0.2)

Y−1 =


3 0.8 3.3 1.2

0.8 1.2 1.2 0.9
3.2 1.2 4.6 2.1
1.2 0.9 2.1 2.7

 , Ŝ =


0.9 0 0.6 0
0 0.7 0 0.1

0.6 0 1.1 0.2
0 0.1 0.2 1.2

 .
▶ estimation errors:

Strue − Y−1
2

F = 49.8,
Strue − Ŝ

2
F = 0.2
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(Binary) hypothesis testing

detection (hypothesis testing) problem
given observation of a random variable X ∈ {1, . . . , n}, choose between:
▶ hypothesis 1: X was generated by distribution p = (p1, . . . , pn)
▶ hypothesis 2: X was generated by distribution q = (q1, . . . , qn)

randomized detector
▶ a nonnegative matrix T ∈ R2×n, with 1TT = 1T

▶ if we observe X = k, we choose hypothesis 1 with probability t1k, hypothesis 2 with
probability t2k

▶ if all elements of T are 0 or 1, it is called a deterministic detector
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Detection probability matrix

D =
[

Tp Tq
]
=

[
1 − Pfp Pfn

Pfp 1 − Pfn

]
▶ Pfp is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
▶ Pfn is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)

▶ multi-objective formulation of detector design

minimize (w.r.t. R2
+) (Pfp,Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n
tik ≥ 0, i = 1, 2, k = 1, . . . , n

variable T ∈ R2×n
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Scalarization

▶ scalarize with weight 𝜆 > 0 to obtain

minimize (Tp)2 + 𝜆(Tq)1
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

▶ an LP with a simple analytical solution

(t1k, t2k) =
{

(1, 0) pk ≥ 𝜆qk
(0, 1) pk < 𝜆qk

▶ a deterministic detector, given by a likelihood ratio test
▶ if pk = 𝜆qk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1 − t2k is optimal (i.e., Pareto-optimal

detectors include non-deterministic detectors)
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Minimax detector

▶ minimize maximum of false positive and false negative probabilities

minimize max{Pfp,Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

▶ an LP; solution is usually not deterministic
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Example
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solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design

▶ m linear measurements yi = aT
i x + wi, i = 1, . . . ,m of unknown x ∈ Rn

▶ measurement errors wi are IID N(0, 1)
▶ ML (least-squares) estimate is

x̂ =

(
m∑︁

i=1
aiaT

i

)−1 m∑︁
i=1

yiai

▶ error e = x̂ − x has zero mean and covariance

E = E eeT =

(
m∑︁

i=1
aiaT

i

)−1

▶ confidence ellipsoids are given by {x | (x − x̂)TE−1 (x − x̂) ≤ 𝛽}
▶ experiment design: choose ai ∈ {v1, . . . , vp} (set of possible test vectors) to make E ‘small’
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Vector optimization formulation

▶ formulate as vector optimization problem

minimize (w.r.t. Sn
+) E =

(∑p
k=1 mkvkvT

k

)−1

subject to mk ≥ 0, m1 + · · · + mp = m
mk ∈ Z

▶ variables are mk, the number of vectors ai equal to vk

▶ difficult in general, due to integer constraint
▶ common scalarizations: minimize log det E, tr E, 𝜆max (E), . . .
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Relaxed experiment design

▶ assume m ≫ p, use 𝜆k = mk/m as (continuous) real variable

minimize (w.r.t. Sn
+) E = (1/m)

(∑p
k=1 𝜆kvkvT

k

)−1

subject to 𝜆 ⪰ 0, 1T𝜆 = 1

▶ a convex relaxation, since we ignore constraint that m𝜆k ∈ Z
▶ optimal value is lower bound on optimal value of (integer) experiment design problem
▶ simple rounding of 𝜆km gives heuristic for experiment design problem
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D-optimal design

▶ scalarize via log determinant

minimize log det
(∑p

k=1 𝜆kvkvT
k

)−1

subject to 𝜆 ⪰ 0, 1T𝜆 = 1

▶ interpretation: minimizes volume of confidence ellipsoids
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Dual of D-optimal experiment design problem

dual problem
maximize log det W + n log n
subject to vT

k Wvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin, that includes all
test vectors vk

complementary slackness: for 𝜆, W primal and dual optimal

𝜆k (1 − vT
k Wvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W
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Example

(p = 20)

_1 = 0.5

_2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W
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Derivation of dual

first reformulate primal problem with new variable X:

minimize log det X−1

subject to X =
∑p

k=1 𝜆kvkvT
k , 𝜆 ⪰ 0, 1T𝜆 = 1

L(X, 𝜆, Z, z, 𝜈) = log det X−1 + tr

(
Z

(
X −

p∑︁
k=1

𝜆kvkvT
k

))
− zT𝜆 + 𝜈(1T𝜆 − 1)

▶ minimize over X by setting gradient to zero: −X−1 + Z = 0
▶ minimum over 𝜆k is −∞ unless −vT

k Zvk − zk + 𝜈 = 0
dual problem

maximize n + log det Z − 𝜈

subject to vT
k Zvk ≤ 𝜈, k = 1, . . . , p

change variable W = Z/𝜈, and optimize over 𝜈 to get dual of page 7.21
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