Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel
7. Statistical estimation

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

Maximum likelihood estimation

- parametric distribution estimation: choose from a family of densities $p_{x}(y)$, indexed by a parameter x (often denoted θ)
- we take $p_{x}(y)=0$ for invalid values of x
- $p_{x}(y)$, as a function of x, is called likelihood function
- $l(x)=\log p_{x}(y)$, as a function of x, is called log-likelihood function
- maximum likelihood estimation (MLE): choose x to maximize $p_{x}(y)$ (or $l(x)$)
- a convex optimization problem if $\log p_{x}(y)$ is concave in x for fixed y
- not the same as $\log p_{x}(y)$ concave in y for fixed x, i.e., $p_{x}(y)$ is a family of log-concave densities

Linear measurements with IID noise

linear measurement model

$$
y_{i}=a_{i}^{T} x+v_{i}, \quad i=1, \ldots, m
$$

- $x \in \mathbf{R}^{n}$ is vector of unknown parameters
- v_{i} is IID measurement noise, with density $p(z)$
- y_{i} is measurement: $y \in \mathbf{R}^{m}$ has density $p_{x}(y)=\prod_{i=1}^{m} p\left(y_{i}-a_{i}^{T} x\right)$
maximum likelihood estimate: any solution x of

$$
\text { maximize } l(x)=\sum_{i=1}^{m} \log p\left(y_{i}-a_{i}^{T} x\right)
$$

(y is observed value)

Examples

- Gaussian noise $\mathcal{N}\left(0, \sigma^{2}\right): p(z)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-z^{2} /\left(2 \sigma^{2}\right)}$,

$$
l(x)=-\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(a_{i}^{T} x-y_{i}\right)^{2}
$$

ML estimate is least-squares solution

- Laplacian noise: $p(z)=(1 /(2 a)) e^{-|z| / a}$,

$$
l(x)=-m \log (2 a)-\frac{1}{a} \sum_{i=1}^{m}\left|a_{i}^{T} x-y_{i}\right|
$$

ML estimate is ℓ_{1}-norm solution

- uniform noise on $[-a, a]$:

$$
l(x)= \begin{cases}-m \log (2 a) & \left|a_{i}^{T} x-y_{i}\right| \leq a, \quad i=1, \ldots, m \\ -\infty & \text { otherwise }\end{cases}
$$

ML estimate is any x with $\left|a_{i}^{T} x-y_{i}\right| \leq a$

Logistic regression

- random variable $y \in\{0,1\}$ with distribution

$$
p=\operatorname{prob}(y=1)=\frac{\exp \left(a^{T} u+b\right)}{1+\exp \left(a^{T} u+b\right)}
$$

- a, b are parameters; $u \in \mathbf{R}^{n}$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations $\left(u_{i}, y_{i}\right)$
- log-likelihood function (for $y_{1}=\cdots=y_{k}=1, y_{k+1}=\cdots=y_{m}=0$):

$$
\begin{aligned}
l(a, b) & =\log \left(\prod_{i=1}^{k} \frac{\exp \left(a^{T} u_{i}+b\right)}{1+\exp \left(a^{T} u_{i}+b\right)} \prod_{i=k+1}^{m} \frac{1}{1+\exp \left(a^{T} u_{i}+b\right)}\right) \\
& =\sum_{i=1}^{k}\left(a^{T} u_{i}+b\right)-\sum_{i=1}^{m} \log \left(1+\exp \left(a^{T} u_{i}+b\right)\right)
\end{aligned}
$$

concave in a, b

Example

- $n=1, m=50$ measurements; circles show points (u_{i}, y_{i})
- solid curve is ML estimate of $p=\exp (a u+b) /(1+\exp (a u+b))$

Gaussian covariance estimation

- fit Gaussian distribution $\mathcal{N}(0, \Sigma)$ to observed data y_{1}, \ldots, y_{N}
- log-likelihood is

$$
\begin{aligned}
l(\Sigma) & =\frac{1}{2} \sum_{k=1}^{N}\left(-2 \pi n-\log \operatorname{det} \Sigma-y^{T} \Sigma^{-1} y\right) \\
& =\frac{N}{2}\left(-2 \pi n-\log \operatorname{det} \Sigma-\operatorname{tr} \Sigma^{-1} Y\right)
\end{aligned}
$$

with $Y=(1 / N) \sum_{k=1}^{N} y_{k} y_{k}^{T}$, the empirical covariance

- l is not concave in Σ (the $\log \operatorname{det} \Sigma$ term has the wrong sign)
- with no constraints or regularization, MLE is empirical covariance $\Sigma^{\mathrm{ml}}=Y$

Change of variables

- change variables to $S=\Sigma^{-1}$
- recover original parameter via $\Sigma=S^{-1}$
- S is the natural parameter in an exponential family description of a Gaussian
- in terms of S, log-likelihood is

$$
l(S)=\frac{N}{2}(-2 \pi n+\log \operatorname{det} S-\operatorname{tr} S Y)
$$

which is concave

- (a similar trick can be used to handle nonzero mean)

Fitting a sparse inverse covariance

- S is the precision matrix of the Gaussian
- $S_{i j}=0$ means that y_{i} and y_{j} are independent, conditioned on $y_{k}, k \neq i, j$
- sparse S means
- many pairs of components are conditionally independent, given the others
- y is described by a sparse (Gaussian) Bayes network
- to fit data with S sparse, minimize convex function

$$
-\log \operatorname{det} S+\operatorname{tr} S Y+\lambda \sum_{i \neq j}\left|S_{i j}\right|
$$

over $S \in \mathbf{S}^{n}$, with hyper-parameter $\lambda \geq 0$

Example

- example with $n=4, N=10$ samples generated from a sparse $S^{\text {true }}$

$$
S^{\text {true }}=\left[\begin{array}{cccc}
1 & 0 & 0.5 & 0 \\
0 & 1 & 0 & 0.1 \\
0.5 & 0 & 1 & 0.3 \\
0 & 0.1 & 0.3 & 1
\end{array}\right]
$$

- empirical and sparse estimate values of Σ^{-1} (with $\lambda=0.2$)

$$
Y^{-1}=\left[\begin{array}{cccc}
3 & 0.8 & 3.3 & 1.2 \\
0.8 & 1.2 & 1.2 & 0.9 \\
3.2 & 1.2 & 4.6 & 2.1 \\
1.2 & 0.9 & 2.1 & 2.7
\end{array}\right], \quad \hat{S}=\left[\begin{array}{cccc}
0.9 & 0 & 0.6 & 0 \\
0 & 0.7 & 0 & 0.1 \\
0.6 & 0 & 1.1 & 0.2 \\
0 & 0.1 & 0.2 & 1.2
\end{array}\right]
$$

- estimation errors: $\quad\left\|S^{\text {true }}-Y^{-1}\right\|_{F}^{2}=49.8, \quad\left\|S^{\text {true }}-\hat{S}\right\|_{F}^{2}=0.2$

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in\{1, \ldots, n\}$, choose between:

- hypothesis 1: X was generated by distribution $p=\left(p_{1}, \ldots, p_{n}\right)$
- hypothesis $2: X$ was generated by distribution $q=\left(q_{1}, \ldots, q_{n}\right)$

randomized detector

- a nonnegative matrix $T \in \mathbf{R}^{2 \times n}$, with $\mathbf{1}^{T} T=\mathbf{1}^{T}$
- if we observe $X=k$, we choose hypothesis 1 with probability $t_{1 k}$, hypothesis 2 with probability $t_{2 k}$
- if all elements of T are 0 or 1 , it is called a deterministic detector

Detection probability matrix

$$
D=\left[\begin{array}{cc}
T p & T q
\end{array}\right]=\left[\begin{array}{cc}
1-P_{\mathrm{fp}} & P_{\mathrm{fn}} \\
P_{\mathrm{fp}} & 1-P_{\mathrm{fn}}
\end{array}\right]
$$

- P_{fp} is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- P_{fn} is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)
- multi-objective formulation of detector design

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{R}_{+}^{2}\right) & \left(P_{\mathrm{fp}}, P_{\mathrm{fn}}\right)=\left((T p)_{2},(T q)_{1}\right) \\
\text { subject to } & t_{1 k}+t_{2 k}=1, \quad k=1, \ldots, n \\
& t_{i k} \geq 0, \quad i=1,2, \quad k=1, \ldots, n
\end{array}
$$

variable $T \in \mathbf{R}^{2 \times n}$

Scalarization

- scalarize with weight $\lambda>0$ to obtain

$$
\begin{array}{ll}
\operatorname{minimize} & (T p)_{2}+\lambda(T q)_{1} \\
\text { subject to } & t_{1 k}+t_{2 k}=1, \quad t_{i k} \geq 0, \quad i=1,2, \quad k=1, \ldots, n
\end{array}
$$

- an LP with a simple analytical solution

$$
\left(t_{1 k}, t_{2 k}\right)= \begin{cases}(1,0) & p_{k} \geq \lambda q_{k} \\ (0,1) & p_{k}<\lambda q_{k}\end{cases}
$$

- a deterministic detector, given by a likelihood ratio test
- if $p_{k}=\lambda q_{k}$ for some k, any value $0 \leq t_{1 k} \leq 1, t_{1 k}=1-t_{2 k}$ is optimal (i.e., Pareto-optimal detectors include non-deterministic detectors)

Minimax detector

- minimize maximum of false positive and false negative probabilities

$$
\begin{array}{ll}
\operatorname{minimize} & \max \left\{P_{\mathrm{fp}}, P_{\mathrm{fn}}\right\}=\max \left\{(T p)_{2},(T q)_{1}\right\} \\
\text { subject to } & t_{1 k}+t_{2 k}=1, \quad t_{i k} \geq 0, \quad i=1,2, \quad k=1, \ldots, n
\end{array}
$$

- an LP; solution is usually not deterministic

Example

$$
\left[\begin{array}{ll}
p & q
\end{array}\right]=\left[\begin{array}{ll}
0.70 & 0.10 \\
0.20 & 0.10 \\
0.05 & 0.70 \\
0.05 & 0.10
\end{array}\right]
$$

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

Experiment design

- m linear measurements $y_{i}=a_{i}^{T} x+w_{i}, i=1, \ldots, m$ of unknown $x \in \mathbf{R}^{n}$
- measurement errors w_{i} are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$
\hat{x}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1} \sum_{i=1}^{m} y_{i} a_{i}
$$

- error $e=\hat{x}-x$ has zero mean and covariance

$$
E=\mathbf{E} e e^{T}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{T}\right)^{-1}
$$

- confidence ellipsoids are given by $\left\{x \mid(x-\hat{x})^{T} E^{-1}(x-\hat{x}) \leq \beta\right\}$
- experiment design: choose $a_{i} \in\left\{v_{1}, \ldots, v_{p}\right\}$ (set of possible test vectors) to make E 'small'

Vector optimization formulation

- formulate as vector optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{S}_{+}^{n}\right) & E=\left(\sum_{k=1}^{p} m_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & m_{k} \geq 0, \quad m_{1}+\cdots+m_{p}=m \\
& m_{k} \in \mathbf{Z}
\end{array}
$$

- variables are m_{k}, the number of vectors a_{i} equal to v_{k}
- difficult in general, due to integer constraint
- common scalarizations: minimize $\log \operatorname{det} E, \operatorname{tr} E, \lambda_{\max }(E), \ldots$

Relaxed experiment design

- assume $m \gg p$, use $\lambda_{k}=m_{k} / m$ as (continuous) real variable

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{S}_{+}^{n}\right) & E=(1 / m)\left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & \lambda \geq 0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

- a convex relaxation, since we ignore constraint that $m \lambda_{k} \in \mathbf{Z}$
- optimal value is lower bound on optimal value of (integer) experiment design problem
- simple rounding of $\lambda_{k} m$ gives heuristic for experiment design problem

D-optimal design

- scalarize via log determinant

$$
\begin{array}{ll}
\text { minimize } & \log \operatorname{det}\left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1} \\
\text { subject to } & \lambda \geq 0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

- interpretation: minimizes volume of confidence ellipsoids

Dual of D-optimal experiment design problem

dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & \log \operatorname{det} W+n \log n \\
\text { subject to } & v_{k}^{T} W v_{k} \leq 1, \quad k=1, \ldots, p
\end{array}
$$

interpretation: $\left\{x \mid x^{T} W x \leq 1\right\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors v_{k}
complementary slackness: for λ, W primal and dual optimal

$$
\lambda_{k}\left(1-v_{k}^{T} W v_{k}\right)=0, \quad k=1, \ldots, p
$$

optimal experiment uses vectors v_{k} on boundary of ellipsoid defined by W

Example

$$
(p=20)
$$

design uses two vectors, on boundary of ellipse defined by optimal W

Derivation of dual

first reformulate primal problem with new variable X :

$$
\begin{aligned}
& \text { minimize } \quad \log \operatorname{det} X^{-1} \\
& \text { subject to } \quad X=\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}, \quad \lambda \geq 0, \quad \mathbf{1}^{T} \lambda=1 \\
& L(X, \lambda, Z, z, v)=\log \operatorname{det} X^{-1}+\operatorname{tr}\left(Z\left(X-\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)\right)-z^{T} \lambda+v\left(\mathbf{1}^{T} \lambda-1\right)
\end{aligned}
$$

- minimize over X by setting gradient to zero: $-X^{-1}+Z=0$
- minimum over λ_{k} is $-\infty$ unless $-v_{k}^{T} Z v_{k}-z_{k}+v=0$
dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & n+\log \operatorname{det} Z-v \\
\text { subject to } & v_{k}^{T} Z v_{k} \leq v, \quad k=1, \ldots, p
\end{array}
$$

change variable $W=Z / v$, and optimize over v to get dual of page 7.21

