Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel
2. Convex sets

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Affine set

line through x_{1}, x_{2} : all points of form $x=\theta x_{1}+(1-\theta) x_{2}$, with $\theta \in \mathbf{R}$

affine set: contains the line through any two distinct points in the set
example: solution set of linear equations $\{x \mid A x=b\}$
(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_{1} and x_{2} : all points of form $x=\theta x_{1}+(1-\theta) x_{2}$, with $0 \leq \theta \leq 1$
convex set: contains line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull conv S : set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\theta_{1} \geq 0, \theta_{2} \geq 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}$, with $a \neq 0$
halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}$, with $a \neq 0$

$$
\int_{a_{0}}^{a} a^{T} x \geq b
$$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

with $P \in \mathbf{S}_{++}^{n}$ (i.e., P symmetric positive definite)

another representation: $\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}$ with A square and nonsingular

Norm balls and norm cones

- norm: a function $\|\cdot\|$ that satisfies
$-\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
$-\|x+y\| \leq\|x\|+\|y\|$
- notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is particular norm
- norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
- norm cone: $\{(x, t) \mid\|x\| \leq t\}$
- norm balls and cones are convex

Euclidean norm cone

$$
\left\{(x, t) \mid\|x\|_{2} \leq t\right\} \subset \mathbf{R}^{n+1}
$$

is called second-order cone

Polyhedra

- polyhedron is solution set of finitely many linear inequalities and equalities

$$
\{x \mid A x \leq b, C x=d\}
$$

($A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq$ is componentwise inequality)

- intersection of finite number of halfspaces and hyperplanes
- example with no equality constraints; a_{i}^{T} are rows of A

Positive semidefinite cone

notation:

- \mathbf{S}^{n} is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \geq 0\right\}$: positive semidefinite (symmetric) $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow z^{T} X z \geq 0 \text { for all } z
$$

- \mathbf{S}_{+}^{n} is a convex cone, the positive semidefinite cone
- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X>0\right\}$: positive definite (symmetric) $n \times n$ matrices
example: $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \in \mathbf{S}_{+}^{2}$

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Showing a set is convex

methods for establishing convexity of a set C

1. apply definition: show $x_{1}, x_{2} \in C, 0 \leq \theta \leq 1 \Longrightarrow \theta x_{1}+(1-\theta) x_{2} \in C$

- recommended only for very simple sets

2. use convex functions (next lecture)
3. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine mapping
- perspective mapping
- linear-fractional mapping
you'll mostly use methods 2 and 3

Intersection

- the intersection of (any number of) convex sets is convex
- example:
$-S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1\right.$ for $\left.|t| \leq \pi / 3\right\}$, with $p(t)=x_{1} \cos t+\cdots+x_{m} \cos m t$
- write $S=\bigcap_{|t| \leq \pi / 3}\{x| | p(t) \mid \leq 1\}$, i.e., an intersection of (convex) slabs
- picture for $m=2$:

Affine mappings

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine, i.e., $f(x)=A x+b$ with $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$
- the image of a convex set under f is convex

$$
S \subseteq \mathbf{R}^{n} \text { convex } \quad \Longrightarrow \quad f(S)=\{f(x) \mid x \in S\} \text { convex }
$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$
C \subseteq \mathbf{R}^{m} \text { convex } \quad \Longrightarrow f^{-1}(C)=\left\{x \in \mathbf{R}^{n} \mid f(x) \in C\right\} \text { convex }
$$

Examples

- scaling, translation: $a S+b=\{a x+b \mid x \in S\}, a, b \in \mathbf{R}$
- projection onto some coordinates: $\{x \mid(x, y) \in S\}$
- if $S \subseteq \mathbf{R}^{n}$ is convex and $c \in \mathbf{R}^{n}, c^{T} S=\left\{c^{T} x \mid x \in S\right\}$ is an interval
- solution set of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \leq B\right\}$ with $A_{i}, B \in \mathbf{S}^{p}$
- hyperbolic cone $\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}, c^{T} x \geq 0\right\}$ with $P \in \mathbf{S}_{+}^{n}$

Perspective and linear-fractional function

- perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

- images and inverse images of convex sets under perspective are convex
- linear-fractional function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

- images and inverse images of convex sets under linear-fractional functions are convex

Linear-fractional function example

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x
$$

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Proper cones

a convex cone $K \subseteq \mathbf{R}^{n}$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
K=\left\{x \in \mathbf{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

Generalized inequality

- (nonstrict and strict) generalized inequality defined by a proper cone K :

$$
x \leq_{K} y \quad \Longleftrightarrow y-x \in K, \quad x<_{K} y \quad \Longleftrightarrow y-x \in \operatorname{int} K
$$

- examples
- componentwise inequality ($K=\mathbf{R}_{+}^{n}$): $x \leq \mathbf{R}_{+}^{n} y \Longleftrightarrow x_{i} \leq y_{i}, \quad i=1, \ldots, n$
- matrix inequality $\left(K=\mathbf{S}_{+}^{n}\right)$: $X \leq \mathbf{S}_{+}^{n} Y \Longleftrightarrow Y-X$ positive semidefinite
these two types are so common that we drop the subscript in \leq_{K}
- many properties of \leq_{K} are similar to \leq on \mathbf{R}, e.g.,

$$
x \leq_{K} y, \quad u \leq_{K} v \quad \Longrightarrow \quad x+u \leq_{K} y+v
$$

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Separating hyperplane theorem

- if C and D are nonempty disjoint (i.e., $C \cap D=\emptyset$) convex sets, there exist $a \neq 0, b$ s.t.

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

- the hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D
- strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

- suppose x_{0} is a boundary point of set $C \subset \mathbf{R}^{n}$
- supporting hyperplane to C at x_{0} has form $\left\{x \mid a^{T} x=a^{T} x_{0}\right\}$, where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$

- supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

