Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel
4. Convex optimization problems

Outline

Optimization problems

```
Some standard convex problems
Transforming problems
Disciplined convex programming
Geometric programming
Quasiconvex optimization
```

Multicriterion optimization

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is the optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the objective or cost function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are the equality constraint functions

Feasible and optimal points

- $x \in \mathbf{R}^{n}$ is feasible if $x \in \boldsymbol{\operatorname { d o m }} f_{0}$ and it satisfies the constraints
- optimal value is $p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}$
- $p^{\star}=\infty$ if problem is infeasible
- $p^{\star}=-\infty$ if problem is unbounded below
- a feasible x is optimal if $f_{0}(x)=p^{\star}$
- $X_{\text {opt }}$ is the set of optimal points

Locally optimal points

x is locally optimal if there is an $R>0$ such that x is optimal for

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } z) & f_{0}(z) \\
\text { subject to } & f_{i}(z) \leq 0, \quad i=1, \ldots, m, \quad h_{i}(z)=0, \quad i=1, \ldots, p \\
& \|z-x\|_{2} \leq R
\end{array}
$$

Examples

examples with $n=1, m=p=0$

- $f_{0}(x)=1 / x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x: p^{\star}=-\infty, x=1$ is locally optimal

$f_{0}(x)=1 / x$

$f_{0}(x)=-\log x$

$f_{0}(x)=x \log x$

$f_{0}(x)=x^{3}-3 x$

Implicit and explicit constraints

standard form optimization problem has implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i},
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints ($m=p=0$)
example:

$$
\operatorname{minimize} f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible

Standard form convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- objective and inequality constraints $f_{0}, f_{1}, \ldots, f_{m}$ are convex
- equality constraints are affine, often written as $A x=b$
- feasible and optimal sets of a convex optimization problem are convex
- problem is quasiconvex if f_{0} is quasiconvex, f_{1}, \ldots, f_{m} are convex, h_{1}, \ldots, h_{p} are affine

Example

- standard form problem

$$
\begin{array}{ll}
\text { minimize } & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{3}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (by our definition) since f_{1} is not convex, h_{1} is not affine
- equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:

- suppose x is locally optimal, but there exists a feasible y with $f_{0}(y)<f_{0}(x)$
- x locally optimal means there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

- consider $z=\theta y+(1-\theta) x$ with $\theta=R /\left(2\|y-x\|_{2}\right)$
- $\|y-x\|_{2}>R$, so $0<\theta<1 / 2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z-x\|_{2}=R / 2$ and $f_{0}(z) \leq \theta f_{0}(y)+(1-\theta) f_{0}(x)<f_{0}(x)$, which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_{0}

- x is optimal for a convex problem if and only if it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0 \text { for all feasible } y
$$

- if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Examples

- unconstrained problem: x minimizes $f_{0}(x)$ if and only if $\nabla f_{0}(x)=0$
- equality constrained problem: x minimizes $f_{0}(x)$ subject to $A x=b$ if and only if there exists a v such that

$$
A x=b, \quad \nabla f_{0}(x)+A^{T} v=0
$$

- minimization over nonnegative orthant: x minimizes $f_{0}(x)$ over \mathbf{R}_{+}^{n} if and only if

$$
x \geq 0, \quad\left\{\begin{aligned}
\nabla f_{0}(x)_{i} \geq 0 & x_{i}=0 \\
\nabla f_{0}(x)_{i}=0 & x_{i}>0
\end{aligned}\right.
$$

Outline

Optimization problems

Some standard convex problems
Transforming problems
Disciplined convex programming
Geometric programming
Quasiconvex optimization
Multicriterion optimization

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Example: Diet problem

- choose nonnegative quantities x_{1}, \ldots, x_{n} of n foods
- one unit of food j costs c_{j} and contains amount $A_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
- to find cheapest healthy diet, solve

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \geq b, \quad x \geq 0
\end{array}
$$

- express in standard LP form as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to }
\end{array}\left[\begin{array}{c}
-A \\
-I
\end{array}\right] x \leq\left[\begin{array}{c}
-b \\
0
\end{array}\right]
$$

Example: Piecewise-linear minimization

- minimize convex piecewise-linear function $f_{0}(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right), x \in \mathbf{R}^{n}$
- equivalent to LP
minimize t
subject to $\quad a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m$
with variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- constraints describe epi f_{0}

Example: Chebyshev center of a polyhedron

Chebyshev center of $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}$ is center of largest inscribed ball $\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}$

- $a_{i}^{T} x \leq b_{i}$ for all $x \in \mathcal{B}$ if and only if

$$
\sup \left\{a_{i}^{T}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\}=a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

- hence, x_{c}, r can be determined by solving LP with variables x_{c}, r

$$
\begin{array}{ll}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \leq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example: Least squares

- least squares problem: minimize $\|A x-b\|_{2}^{2}$
- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse)
- can add linear constraints, e.g.,
$-x \geq 0$ (nonnegative least squares)
$-x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (isotonic regression)

Example: Linear program with random cost

- LP with random cost c, with mean \bar{c} and covariance Σ
- hence, LP objective $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- risk-averse problem:

$$
\begin{array}{ll}
\text { minimize } & \mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \leq h, \quad A x=b
\end{array}
$$

- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
- express as QP

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x \\
\text { subject to } & G x \leq h, \quad A x=b
\end{array}
$$

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $P_{i} \in \mathbf{S}_{+}^{n}$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \in \mathbf{S}_{++}^{n}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

$\left(A_{i} \in \mathbf{R}^{n_{i} \times n}, F \in \mathbf{R}^{p \times n}\right)$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right) \in \text { second-order cone in } \mathbf{R}^{n_{i}+1}
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Example: Robust linear programming

suppose constraint vectors a_{i} are uncertain in the LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

two common approaches to handling uncertainty

- deterministic worst-case: constraints must hold for all $a_{i} \in \mathcal{E}_{i}$ (uncertainty ellipsoids)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \text { for all } a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- stochastic: a_{i} is random variable; constraints must hold with probability η

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m
\end{array}
$$

Deterministic worst-case approach

- uncertainty ellipsoids are $\mathcal{E}_{i}=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\},\left(\bar{a}_{i} \in \mathbf{R}^{n}, P_{i} \in \mathbf{R}^{n \times n}\right)$
- center of \mathcal{E}_{i} is \bar{a}_{i}; semi-axes determined by singular values/vectors of P_{i}
- robust LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m
\end{array}
$$

- equivalent to SOCP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(follows from $\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}$)

Stochastic approach

- assume $a_{i} \sim \mathcal{N}\left(\bar{a}_{i}, \Sigma_{i}\right)$
- $a_{i}^{T} x \sim \mathcal{N}\left(\bar{a}_{i}^{T} x, x^{T} \Sigma_{i} x\right)$, so

$$
\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right)=\Phi\left(\frac{b_{i}-\bar{a}_{i}^{T} x}{\left\|\Sigma_{i}^{1 / 2} x\right\|_{2}}\right)
$$

where $\Phi(u)=(1 / \sqrt{2 \pi}) \int_{-\infty}^{u} e^{-t^{2} / 2} d t$ is $\mathcal{N}(0,1)$ CDF

- $\operatorname{prob}\left(a_{i}^{T} x \leq b_{i}\right) \geq \eta$ can be expressed as $\bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}$
- for $\eta \geq 1 / 2$, robust LP equivalent to SOCP
minimize $c^{T} x$
subject to $\quad \bar{a}_{i}^{T} x+\Phi^{-1}(\eta)\left\|\Sigma_{i}^{1 / 2} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m$

Conic form problem

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F x+g \leq_{K} 0 \\
& A x=b
\end{array}
$$

- constraint $F x+g \leq_{K} 0$ involves a generalized inequality with respect to a proper cone K
- linear programming is a conic form problem with $K=\mathbf{R}_{+}^{m}$
- as with standard convex problem
- feasible and optimal sets are convex
- any local optimum is global

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \leq 0 \\
& A x=b
\end{array}
$$

with $F_{i}, G \in \mathbf{S}^{k}$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \leq 0, \quad x_{1} \tilde{F}_{1}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \leq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \leq 0
$$

Example: Matrix norm minimization

$$
\text { minimize } \quad\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{T} A(x)\right)\right)^{1 / 2}
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{R}^{p \times q}$) equivalent SDP

$$
\left.\begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \succeq 0
$$

- variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- constraint follows from

$$
\begin{aligned}
\|A\|_{2} \leq t & \Longleftrightarrow A^{T} A \leq t^{2} I, \quad t \geq 0 \\
& \Longleftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{T} & t I
\end{array}\right] \geq 0
\end{aligned}
$$

Outline

Optimization problems

Some standard convex problems

Transforming problems
Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Change of variables

- $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is one-to-one with $\phi(\operatorname{dom} \phi) \supseteq \mathcal{D}$
- consider (possibly non-convex) problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- change variables to z with $x=\phi(z)$
- can solve equivalent problem

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}_{0}(z) \\
\text { subject to } & \tilde{f}_{i}(z) \leq 0, \quad i=1, \ldots, m \\
& \tilde{h}_{i}(z)=0, \quad i=1, \ldots, p
\end{array}
$$

where $\tilde{f}_{i}(z)=f_{i}(\phi(z))$ and $\tilde{h}_{i}(z)=h_{i}(\phi(z))$

- recover original optimal point as $x^{\star}=\phi\left(z^{\star}\right)$

Example

- non-convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1} / x_{2}+x_{3} / x_{1} \\
\text { subject to } & x_{2} / x_{3}+x_{1} \leq 1
\end{array}
$$

with implicit constraint $x>0$

- change variables using $x=\phi(z)=\exp z$ to get

$$
\begin{array}{ll}
\operatorname{minimize} & \exp \left(z_{1}-z_{2}\right)+\exp \left(z_{3}-z_{1}\right) \\
\text { subject to } & \exp \left(z_{2}-z_{3}\right)+\exp \left(z_{1}\right) \leq 1
\end{array}
$$

which is convex

Transformation of objective and constraint functions

suppose

- ϕ_{0} is monotone increasing
- $\psi_{i}(u) \leq 0$ if and only if $u \leq 0, i=1, \ldots, m$
- $\varphi_{i}(u)=0$ if and only if $u=0, i=1, \ldots, p$
standard form optimization problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \phi_{0}\left(f_{0}(x)\right) \\
\text { subject to } & \psi_{i}\left(f_{i}(x)\right) \leq 0, \quad i=1, \ldots, m \\
& \varphi_{i}\left(h_{i}(x)\right)=0, \quad i=1, \ldots, p
\end{array}
$$

example: minimizing $\|A x-b\|$ is equivalent to minimizing $\|A x-b\|^{2}$

Converting maximization to minimization

- suppose ϕ_{0} is monotone decreasing
- the maximization problem

$$
\begin{array}{cl}
\operatorname{maximize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

is equivalent to the minimization problem

$$
\begin{array}{lll}
\operatorname{minimize} & \phi_{0}\left(f_{0}(x)\right) \\
\text { subject to } & f_{i}(x) \leq 0, & i=1, \ldots, m \\
& h_{i}(x)=0, & i=1, \ldots, p
\end{array}
$$

- examples:
- $\phi_{0}(u)=-u$ transforms maximizing a concave function to minimizing a convex function
- $\phi_{0}(u)=1 / u$ transforms maximizing a concave positive function to minimizing a convex function

Eliminating equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } z) & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where F and x_{0} are such that $A x=b \Longleftrightarrow x=F z+x_{0}$ for some z

Introducing equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { over } x, y_{i}\right) & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, \quad i=0,1, \ldots, m
\end{array}
$$

Introducing slack variables for linear inequalities

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{a}{i}{T}x\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m
\end{array}
$$

Epigraph form

standard form convex problem is equivalent to

```
minimize (over x,t) t
subject to }\quad\mp@subsup{f}{0}{}(x)-t\leq
fi}(x)\leq0,\quadi=1,\ldots,
Ax=b
```


Minimizing over some variables

```
minimize }\mp@subsup{f}{0}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}
subject to }\mp@subsup{f}{i}{}(\mp@subsup{x}{1}{})\leq0,\quadi=1,\ldots,
```

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}_{0}\left(x_{1}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^{T} x \quad$ SDP: minimize $c^{T} x$
subject to $A x \leq b \quad$ subject to $\boldsymbol{\operatorname { d i a g }}(A x-b) \leq 0$
(note different interpretation of generalized inequalities \leq in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize $f^{T} x$ subject to $\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$

SDP: minimize $f^{T} x$

$$
\text { subject to }\left[\begin{array}{cc}
\left(c_{i}^{T} x+d_{i}\right) I & A_{i} x+b_{i} \\
\left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}
\end{array}\right] \geq 0, \quad i=1, \ldots, m
$$

Convex relaxation

- start with nonconvex problem: minimize $h(x)$ subject to $x \in C$
- find convex function \hat{h} with $\hat{h}(x) \leq h(x)$ for all $x \in \boldsymbol{\operatorname { d o m }} h$ (i.e., a pointwise lower bound on h)
- find set $\hat{C} \supseteq C$ (e.g., $\hat{C}=\mathbf{c o n v} C)$ described by linear equalities and convex inequalities

$$
\hat{C}=\left\{x \mid f_{i}(x) \leq 0, i=1, \ldots, m, f_{m}(x) \leq 0, A x=b\right\}
$$

- convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \hat{h}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b
\end{array}
$$

is a convex relaxation of the original problem

- optimal value of relaxation is lower bound on optimal value of original problem

Example: Boolean LP

- mixed integer linear program (MILP):

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T}(x, z) \\
\text { subject to } & F(x, z) \leq g, \quad A(x, z)=b, \quad z \in\{0,1\}^{q}
\end{array}
$$

with variables $x \in \mathbf{R}^{n}, z \in \mathbf{R}^{q}$

- z_{i} are called Boolean variables
- this problem is in general hard to solve
- LP relaxation: replace $z \in\{0,1\}^{q}$ with $z \in[0,1]^{q}$
- optimal value of relaxation LP is lower bound on MILP
- can use as heuristic for approximately solving MILP, e.g., relax and round

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Disciplined convex program

- specify objective as
- minimize \{scalar convex expression\}, or
- maximize \{scalar concave expression\}
- specify constraints as
- \{convex expression\} <= \{concave expression\} or
- \{concave expression\} >= \{convex expression\} or
- \{affine expression\} == \{affine expression\}
- curvature of expressions are DCP certified, i.e., follow composition rule
- DCP-compliant problems can be automatically transformed to standard forms, then solved

CVXPY example

math:

- x is the variable
- A, b are given

CVXPY code:

```
import cvxpy as cp
A, b = ...
x = cp.Variable(n)
obj = cp.norm(x, 1)
constr = [
    A @ x == b,
    cp.norm(x, 'inf') <= 1,
]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```


How CVXPY works

- starts with your optimization problem \mathcal{P}_{1}
- finds a sequence of equivalent problems $\mathcal{P}_{2}, \ldots, \mathcal{P}_{N}$
- final problem \mathcal{P}_{N} matches a standard form (e.g., LP, QP, SOCP, or SDP)
- calls a specialized solver on \mathcal{P}_{N}
- retrieves solution of original problem by reversing the transformations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Geometric programming

- monomial function:

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

with $c>0$; exponent a_{i} can be any real number

- posynomial function: sum of monomials

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \quad \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

- geometric program (GP)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \\
& h_{i}(x)=1, \quad i=1, \ldots, p
\end{array}
$$

with f_{i} posynomial, h_{i} monomial

Geometric program in convex form

- change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints
- monomial $f(x)=c x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=a^{T} y+b \quad(b=\log c)
$$

- posynomial $f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}$ transforms to

$$
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{a_{k}^{T} y+b_{k}}\right) \quad\left(b_{k}=\log c_{k}\right)
$$

- geometric program transforms to convex problem

$$
\begin{array}{ll}
\text { minimize } & \log \left(\sum_{k=1}^{K} \exp \left(a_{0 k}^{T} y+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{K} \exp \left(a_{i k}^{T} y+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m \\
& G y+d=0
\end{array}
$$

Examples: Frobenius norm diagonal scaling

- we seek diagonal matrix $D=\boldsymbol{\operatorname { d i a g }}(d), d>0$, to minimize $\left\|D M D^{-1}\right\|_{F}^{2}$
- express as

$$
\left\|D M D^{-1}\right\|_{F}^{2}=\sum_{i, j=1}^{n}\left(D M D^{-1}\right)_{i j}^{2}=\sum_{i, j=1}^{n} M_{i j}^{2} d_{i}^{2} / d_{j}^{2}
$$

- a posynomial in d (with exponents 0,2 , and -2)
- in convex form, with $y=\log d$,

$$
\log \left\|D M D^{-1}\right\|_{F}^{2}=\log \left(\sum_{i, j=1}^{n} \exp \left(2\left(y_{i}-y_{j}+\log \left|M_{i j}\right|\right)\right)\right)
$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Quasiconvex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ quasiconvex, f_{1}, \ldots, f_{m} convex
can have locally optimal points that are not (globally) optimal

Linear-fractional program

- linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & \left(c^{T} x+d\right) /\left(e^{T} x+f\right) \\
\text { subject to } & G x \leq h, \quad A x=b
\end{array}
$$

with variable x and implicit constraint $e^{T} x+f>0$

- equivalent to the LP (with variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \leq h z, \quad A y=b z \\
& e^{T} y+f z=1, \quad z \geq 0
\end{array}
$$

- recover $x^{\star}=y^{\star} / z^{\star}$

Von Neumann model of a growing economy

- $x, x^{+} \in \mathbf{R}_{++}^{n}$: activity levels of n economic sectors, in current and next period
- $(A x)_{i}$: amount of good i produced in current period
- $\left(B x^{+}\right)_{i}$: amount of good i consumed in next period
- $B x^{+} \leq A x$: goods consumed next period no more than produced this period
- x_{i}^{+} / x_{i} : growth rate of sector i
- allocate activity to maximize growth rate of slowest growing sector

$$
\begin{array}{ll}
\text { maximize (over } \left.x, x^{+}\right) & \min _{i=1, \ldots, n} x_{i}^{+} / x_{i} \\
\text { subject to } & x^{+} \geq 0, \quad B x^{+} \leq A x
\end{array}
$$

- a quasiconvex problem with variables x, x^{+}

Convex representation of sublevel sets

- if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:
- $\phi_{t}(x)$ is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e., $f_{0}(x) \leq t \Longleftrightarrow \phi_{t}(x) \leq 0$

example:

- $f_{0}(x)=p(x) / q(x)$, with p convex and nonnegative, q concave and positive
- take $\phi_{t}(x)=p(x)-\operatorname{tq}(x)$: for $t \geq 0$,
- ϕ_{t} convex in x
$-p(x) / q(x) \leq t$ if and only if $\phi_{t}(x) \leq 0$

Bisection method for quasiconvex optimization

- for fixed t, consider convex feasiblity problem

$$
\begin{equation*}
\phi_{t}(x) \leq 0, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

- bisection method:
given $l \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$.
repeat

1. $t:=(l+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $l:=t$.
until $u-l \leq \epsilon$.

- requires exactly $\left\lceil\log _{2}((u-l) / \epsilon)\right\rceil$ iterations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Multicriterion optimization

- multicriterion or multi-objective problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b
\end{array}
$$

- objective is the vector $f_{0}(x) \in \mathbf{R}^{q}$
- q different objectives F_{1}, \ldots, F_{q}; roughly speaking we want all F_{i} 's to be small
- feasible x^{\star} is optimal if y feasible $\Longrightarrow f_{0}\left(x^{\star}\right) \leq f_{0}(y)$
- this means that x^{\star} simultaneously minimizes each F_{i}; the objectives are noncompeting
- not surprisingly, this doesn't happen very often

Pareto optimality

- feasible x dominates another feasible \tilde{x} if $f_{0}(x) \leq f_{0}(\tilde{x})$ and for at least one $i, F_{i}(x)<F_{i}(\tilde{x})$
- i.e., x meets \tilde{x} on all objectives, and beats it on at least one
- feasible x^{po} is Pareto optimal if it is not dominated by any feasible point
- can be expressed as: y feasible, $f_{0}(y) \leq f_{0}\left(x^{\mathrm{po}}\right) \Longrightarrow f_{0}\left(x^{\mathrm{po}}\right)=f_{0}(y)$
- there are typically many Pareto optimal points
- for $q=2$, set of Pareto optimal objective values is the optimal trade-off curve
- for $q=3$, set of Pareto optimal objective values is the optimal trade-off surface

Optimal and Pareto optimal points

set of achievable objective values $O=\left\{f_{0}(x) \mid x\right.$ feasible $\}$

- feasible x is optimal if $f_{0}(x)$ is the minimum value of O
- feasible x is Pareto optimal if $f_{0}(x)$ is a minimal value of O

Regularized least-squares

- minimize $\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right.$) (first objective is loss; second is regularization)
- example with $A \in \mathbf{R}^{100 \times 10}$; heavy line shows Pareto optimal points

Risk return trade-off in portfolio optimization

- variable $x \in \mathbf{R}^{n}$ is investment portfolio, with x_{i} fraction invested in asset i
- $\bar{p} \in \mathbf{R}^{n}$ is mean, Σ is covariance of asset returns
- portfolio return has mean $\bar{p}^{T} x$, variance $x^{T} \sum x$
- minimize $\left(-\bar{p}^{T} x, x^{T} \Sigma x\right)$, subject to $\mathbf{1}^{T} x=1, x \geq 0$
- Pareto optimal portfolios trace out optimal risk-return curve

Example

Scalarization

- scalarization combines the multiple objectives into one (scalar) objective
- a standard method for finding Pareto optimal points
- choose $\lambda>0$ and solve scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} f_{0}(x)=\lambda_{1} F_{1}(x)+\cdots+\lambda_{q} F_{q}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- λ_{i} are relative weights on the objectives
- if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
- for convex problems, can find (almost) all Pareto optimal points by varying $\lambda>0$

Example

Example: Regularized least-squares

- regularized least-squares problem: minimize $\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right)$
- take $\lambda=(1, \gamma)$ with $\gamma>0$, and minimize $\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}$

Example: Risk-return trade-off

- risk-return trade-off: minimize $\left(-\bar{p}^{T} x, x^{T} \Sigma x\right)$ subject to $\mathbf{1}^{T} x=1, x \geq 0$
- with $\lambda=(1, \gamma)$ we obtain scalarized problem

$$
\begin{array}{ll}
\text { minimize } & -\bar{p}^{T} x+\gamma x^{T} \sum x \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \geq 0
\end{array}
$$

- objective is negative risk-adjusted return, $\bar{p}^{T} x-\gamma x^{T} \Sigma x$
- γ is called the risk-aversion parameter

