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Optimization problem in standard form

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

▶ x ∈ Rn is the optimization variable
▶ f0 : Rn → R is the objective or cost function
▶ fi : Rn → R, i = 1, . . . ,m, are the inequality constraint functions
▶ hi : Rn → R are the equality constraint functions

Convex Optimization Boyd and Vandenberghe 4.2



Feasible and optimal points

▶ x ∈ Rn is feasible if x ∈ dom f0 and it satisfies the constraints

▶ optimal value is p★ = inf{f0 (x) | fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p}
▶ p★ = ∞ if problem is infeasible

▶ p★ = −∞ if problem is unbounded below

▶ a feasible x is optimal if f0 (x) = p★

▶ Xopt is the set of optimal points
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Locally optimal points
x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0 (z)
subject to fi (z) ≤ 0, i = 1, . . . ,m, hi (z) = 0, i = 1, . . . , p

∥z − x∥2 ≤ R

x★ xlo

p★

f0 (xlo)
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Examples

examples with n = 1, m = p = 0
▶ f0 (x) = 1/x, dom f0 = R++: p★ = 0, no optimal point
▶ f0 (x) = − log x, dom f0 = R++: p★ = −∞
▶ f0 (x) = x log x, dom f0 = R++: p★ = −1/e, x = 1/e is optimal
▶ f0 (x) = x3 − 3x: p★ = −∞, x = 1 is locally optimal

0 1 2
0

5

10

f0 (x) = 1/x

0 1 2
0

3

6

f0 (x) = − log x

0 1/e 1

0

f0 (x) = x log x

−2 0 2

−3

0

f0 (x) = x3 − 3x

Convex Optimization Boyd and Vandenberghe 4.5



Implicit and explicit constraints

standard form optimization problem has implicit constraint

x ∈ D =
m⋂

i=0
dom fi ∩

p⋂
i=1

dom hi,

▶ we call D the domain of the problem
▶ the constraints fi (x) ≤ 0, hi (x) = 0 are the explicit constraints
▶ a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize f0 (x) = −∑k

i=1 log(bi − aT
i x)

is an unconstrained problem with implicit constraints aT
i x < bi
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Feasibility problem

find x
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0 (x) = 0:

minimize 0
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

▶ p★ = 0 if constraints are feasible; any feasible x is optimal
▶ p★ = ∞ if constraints are infeasible
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Standard form convex optimization problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

aT
i x = bi, i = 1, . . . , p

▶ objective and inequality constraints f0, f1, . . . , fm are convex
▶ equality constraints are affine, often written as Ax = b
▶ feasible and optimal sets of a convex optimization problem are convex

▶ problem is quasiconvex if f0 is quasiconvex, f1, . . . , fm are convex, h1, . . . , hp are affine
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Example

▶ standard form problem

minimize f0 (x) = x2
1 + x2

2
subject to f1 (x) = x1/(1 + x2

2) ≤ 0
h1 (x) = (x1 + x2)2 = 0

▶ f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex
▶ not a convex problem (by our definition) since f1 is not convex, h1 is not affine
▶ equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2
subject to x1 ≤ 0

x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:
▶ suppose x is locally optimal, but there exists a feasible y with f0 (y) < f0 (x)
▶ x locally optimal means there is an R > 0 such that

z feasible, ∥z − x∥2 ≤ R =⇒ f0 (z) ≥ f0 (x)
▶ consider z = 𝜃y + (1 − 𝜃)x with 𝜃 = R/(2∥y − x∥2)
▶ ∥y − x∥2 > R, so 0 < 𝜃 < 1/2
▶ z is a convex combination of two feasible points, hence also feasible
▶ ∥z − x∥2 = R/2 and f0 (z) ≤ 𝜃f0 (y) + (1 − 𝜃)f0 (x) < f0 (x), which contradicts our assumption

that x is locally optimal
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Optimality criterion for differentiable f0

▶ x is optimal for a convex problem if and only if it is feasible and

∇f0 (x)T (y − x) ≥ 0 for all feasible y

−∇f0 (x)

X x

▶ if nonzero, ∇f0 (x) defines a supporting hyperplane to feasible set X at x
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Examples

▶ unconstrained problem: x minimizes f0 (x) if and only if ∇f0 (x) = 0

▶ equality constrained problem: x minimizes f0 (x) subject to Ax = b if and only if there
exists a 𝜈 such that

Ax = b, ∇f0 (x) + AT𝜈 = 0

▶ minimization over nonnegative orthant: x minimizes f0 (x) over Rn
+ if and only if

x ⪰ 0,
{ ∇f0 (x)i ≥ 0 xi = 0
∇f0 (x)i = 0 xi > 0
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Linear program (LP)

minimize cTx + d
subject to Gx ⪯ h

Ax = b

▶ convex problem with affine objective and constraint functions
▶ feasible set is a polyhedron

P x
★

−c
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Example: Diet problem

▶ choose nonnegative quantities x1, . . . , xn of n foods
▶ one unit of food j costs cj and contains amount Aij of nutrient i
▶ healthy diet requires nutrient i in quantity at least bi
▶ to find cheapest healthy diet, solve

minimize cTx
subject to Ax ⪰ b, x ⪰ 0

▶ express in standard LP form as

minimize cTx

subject to
[ −A
−I

]
x ⪯

[ −b
0

]
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Example: Piecewise-linear minimization

▶ minimize convex piecewise-linear function f0 (x) = maxi=1,...,m (aT
i x + bi), x ∈ Rn

▶ equivalent to LP
minimize t
subject to aT

i x + bi ≤ t, i = 1, . . . ,m

with variables x ∈ Rn, t ∈ R

▶ constraints describe epi f0

Convex Optimization Boyd and Vandenberghe 4.16



Example: Chebyshev center of a polyhedron

Chebyshev center of P = {x | aT
i x ≤ bi, i = 1, . . . ,m} is

center of largest inscribed ball B = {xc + u | ∥u∥2 ≤ r}
xchebxcheb

▶ aT
i x ≤ bi for all x ∈ B if and only if

sup{aT
i (xc + u) | ∥u∥2 ≤ r} = aT

i xc + r∥ai∥2 ≤ bi

▶ hence, xc, r can be determined by solving LP with variables xc, r
maximize r
subject to aT

i xc + r∥ai∥2 ≤ bi, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx + qTx + r
subject to Gx ⪯ h

Ax = b

▶ P ∈ Sn
+, so objective is convex quadratic

▶ minimize a convex quadratic function over a polyhedron

P

x★

−∇f0 (x
★)
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Example: Least squares

▶ least squares problem: minimize ∥Ax − b∥2
2

▶ analytical solution x★ = A†b (A† is pseudo-inverse)

▶ can add linear constraints, e.g.,
– x ⪰ 0 (nonnegative least squares)
– x1 ≤ x2 ≤ · · · ≤ xn (isotonic regression)
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Example: Linear program with random cost

▶ LP with random cost c, with mean c̄ and covariance Σ

▶ hence, LP objective cTx is random variable with mean c̄Tx and variance xTΣx

▶ risk-averse problem:
minimize E cTx + 𝛾 var(cTx)
subject to Gx ⪯ h, Ax = b

▶ 𝛾 > 0 is risk aversion parameter; controls the trade-off between expected cost and
variance (risk)

▶ express as QP
minimize c̄Tx + 𝛾xTΣx
subject to Gx ⪯ h, Ax = b
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x + qT
0 x + r0

subject to (1/2)xTPix + qT
i x + ri ≤ 0, i = 1, . . . ,m

Ax = b

▶ Pi ∈ Sn
+; objective and constraints are convex quadratic

▶ if P1, . . . ,Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and an affine set
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Second-order cone programming

minimize f Tx
subject to ∥Aix + bi∥2 ≤ cT

i x + di, i = 1, . . . ,m
Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)
▶ inequalities are called second-order cone (SOC) constraints:

(Aix + bi, cT
i x + di) ∈ second-order cone in Rni+1

▶ for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP
▶ more general than QCQP and LP
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Example: Robust linear programming

suppose constraint vectors ai are uncertain in the LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m,

two common approaches to handling uncertainty
▶ deterministic worst-case: constraints must hold for all ai ∈ Ei (uncertainty ellipsoids)

minimize cTx
subject to aT

i x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

▶ stochastic: ai is random variable; constraints must hold with probability 𝜂

minimize cTx
subject to prob(aT

i x ≤ bi) ≥ 𝜂, i = 1, . . . ,m
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Deterministic worst-case approach

▶ uncertainty ellipsoids are Ei = {āi + Piu | ∥u∥2 ≤ 1}, (āi ∈ Rn, Pi ∈ Rn×n)
▶ center of Ei is āi; semi-axes determined by singular values/vectors of Pi

▶ robust LP
minimize cTx
subject to aT

i x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m
▶ equivalent to SOCP

minimize cTx
subject to āT

i x + ∥PT
i x∥2 ≤ bi, i = 1, . . . ,m

(follows from sup∥u∥2≤1 (āi + Piu)Tx = āT
i x + ∥PT

i x∥2)
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Stochastic approach

▶ assume ai ∼ N(āi, Σi)
▶ aT

i x ∼ N(āT
i x, xTΣix), so

prob(aT
i x ≤ bi) = Φ

(
bi − āT

i x

∥Σ1/2
i x∥2

)
where Φ(u) = (1/

√
2𝜋)

∫ u
−∞ e−t2/2 dt is N(0, 1) CDF

▶ prob(aT
i x ≤ bi) ≥ 𝜂 can be expressed as āT

i x +Φ−1 (𝜂)∥Σ1/2
i x∥2 ≤ bi

▶ for 𝜂 ≥ 1/2, robust LP equivalent to SOCP

minimize cTx
subject to āT

i x +Φ−1 (𝜂)∥Σ1/2
i x∥2 ≤ bi, i = 1, . . . ,m
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Conic form problem

minimize cTx
subject to Fx + g ⪯K 0

Ax = b

▶ constraint Fx + g ⪯K 0 involves a generalized inequality with respect to a proper cone K

▶ linear programming is a conic form problem with K = Rm
+

▶ as with standard convex problem
– feasible and optimal sets are convex
– any local optimum is global
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · · + xnFn + G ⪯ 0

Ax = b

with Fi, G ∈ Sk

▶ inequality constraint is called linear matrix inequality (LMI)
▶ includes problems with multiple LMI constraints: for example,

x1F̂1 + · · · + xnF̂n + Ĝ ⪯ 0, x1F̃1 + · · · + xnF̃n + G̃ ⪯ 0

is equivalent to single LMI

x1

[
F̂1 0
0 F̃1

]
+ x2

[
F̂2 0
0 F̃2

]
+ · · · + xn

[
F̂n 0
0 F̃n

]
+

[
Ĝ 0
0 G̃

]
⪯ 0
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Example: Matrix norm minimization

minimize ∥A(x)∥2 =
(
𝜆max (A(x)TA(x)))1/2

where A(x) = A0 + x1A1 + · · · + xnAn (with given Ai ∈ Rp×q)
equivalent SDP

minimize t

subject to
[

tI A(x)
A(x)T tI

]
⪰ 0

▶ variables x ∈ Rn, t ∈ R
▶ constraint follows from

∥A∥2 ≤ t ⇐⇒ ATA ⪯ t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]
⪰ 0
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Change of variables
▶ 𝜙 : Rn → Rn is one-to-one with 𝜙(dom 𝜙) ⊇ D
▶ consider (possibly non-convex) problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

▶ change variables to z with x = 𝜙(z)
▶ can solve equivalent problem

minimize f̃0 (z)
subject to f̃i (z) ≤ 0, i = 1, . . . ,m

h̃i (z) = 0, i = 1, . . . , p

where f̃i (z) = fi (𝜙(z)) and h̃i (z) = hi (𝜙(z))
▶ recover original optimal point as x★ = 𝜙(z★)
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Example

▶ non-convex problem
minimize x1/x2 + x3/x1
subject to x2/x3 + x1 ≤ 1

with implicit constraint x ≻ 0

▶ change variables using x = 𝜙(z) = exp z to get

minimize exp(z1 − z2) + exp(z3 − z1)
subject to exp(z2 − z3) + exp(z1) ≤ 1

which is convex
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Transformation of objective and constraint functions

suppose
▶ 𝜙0 is monotone increasing
▶ 𝜓i (u) ≤ 0 if and only if u ≤ 0, i = 1, . . . ,m
▶ 𝜑i (u) = 0 if and only if u = 0, i = 1, . . . , p

standard form optimization problem is equivalent to

minimize 𝜙0 (f0 (x))
subject to 𝜓i (fi (x)) ≤ 0, i = 1, . . . ,m

𝜑i (hi (x)) = 0, i = 1, . . . , p

example: minimizing ∥Ax − b∥ is equivalent to minimizing ∥Ax − b∥2
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Converting maximization to minimization

▶ suppose 𝜙0 is monotone decreasing
▶ the maximization problem

maximize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

is equivalent to the minimization problem

minimize 𝜙0 (f0 (x))
subject to fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

▶ examples:
– 𝜙0 (u) = −u transforms maximizing a concave function to minimizing a convex function
– 𝜙0 (u) = 1/u transforms maximizing a concave positive function to minimizing a convex function
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Eliminating equality constraints

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to
minimize (over z) f0 (Fz + x0)
subject to fi (Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that Ax = b ⇐⇒ x = Fz + x0 for some z
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Introducing equality constraints

minimize f0 (A0x + b0)
subject to fi (Aix + bi) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize (over x, yi) f0 (y0)
subject to fi (yi) ≤ 0, i = 1, . . . ,m

yi = Aix + bi, i = 0, 1, . . . ,m
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Introducing slack variables for linear inequalities

minimize f0 (x)
subject to aT

i x ≤ bi, i = 1, . . . ,m

is equivalent to
minimize (over x, s) f0 (x)
subject to aT

i x + si = bi, i = 1, . . . ,m
si ≥ 0, i = 1, . . .m
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Epigraph form

standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0 (x) − t ≤ 0

fi (x) ≤ 0, i = 1, . . . ,m
Ax = b
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Minimizing over some variables

minimize f0 (x1, x2)
subject to fi (x1) ≤ 0, i = 1, . . . ,m

is equivalent to
minimize f̃0 (x1)
subject to fi (x1) ≤ 0, i = 1, . . . ,m

where f̃0 (x1) = infx2 f0 (x1, x2)
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax ⪯ b

SDP: minimize cTx
subject to diag(Ax − b) ⪯ 0

(note different interpretation of generalized inequalities ⪯ in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize f Tx
subject to ∥Aix + bi∥2 ≤ cT

i x + di, i = 1, . . . ,m

SDP: minimize f Tx

subject to
[ (cT

i x + di)I Aix + bi
(Aix + bi)T cT

i x + di

]
⪰ 0, i = 1, . . . ,m
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Convex relaxation

▶ start with nonconvex problem: minimize h(x) subject to x ∈ C
▶ find convex function ĥ with ĥ(x) ≤ h(x) for all x ∈ dom h (i.e., a pointwise lower bound on h)
▶ find set Ĉ ⊇ C (e.g., Ĉ = conv C) described by linear equalities and convex inequalities

Ĉ = {x | fi (x) ≤ 0, i = 1, . . . ,m, fm (x) ≤ 0, Ax = b}
▶ convex problem

minimize ĥ(x)
subject to fi (x) ≤ 0, i = 1, . . . ,m, Ax = b

is a convex relaxation of the original problem
▶ optimal value of relaxation is lower bound on optimal value of original problem
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Example: Boolean LP

▶ mixed integer linear program (MILP):

minimize cT (x, z)
subject to F(x, z) ⪯ g, A(x, z) = b, z ∈ {0, 1}q

with variables x ∈ Rn, z ∈ Rq

▶ zi are called Boolean variables
▶ this problem is in general hard to solve

▶ LP relaxation: replace z ∈ {0, 1}q with z ∈ [0, 1]q

▶ optimal value of relaxation LP is lower bound on MILP
▶ can use as heuristic for approximately solving MILP, e.g., relax and round
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Disciplined convex program

▶ specify objective as
– minimize {scalar convex expression}, or
– maximize {scalar concave expression}

▶ specify constraints as
– {convex expression} <= {concave expression} or
– {concave expression} >= {convex expression} or
– {affine expression} == {affine expression}

▶ curvature of expressions are DCP certified, i.e., follow composition rule

▶ DCP-compliant problems can be automatically transformed to standard forms, then solved
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CVXPY example

math:

minimize ∥x∥1
subject to Ax = b

∥x∥∞ ≤ 1

▶ x is the variable
▶ A, b are given

CVXPY code:

import cvxpy as cp

A, b = ...

x = cp.Variable(n)

obj = cp.norm(x, 1)

constr = [

A @ x == b,

cp.norm(x, 'inf') <= 1,
]

prob = cp.Problem(cp.Minimize(obj), constr)

prob.solve()
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How CVXPY works

▶ starts with your optimization problem P1

▶ finds a sequence of equivalent problems P2, . . . ,PN
▶ final problem PN matches a standard form (e.g., LP, QP, SOCP, or SDP)
▶ calls a specialized solver on PN
▶ retrieves solution of original problem by reversing the transformations

your problem

P1 ⇐⇒ P2 ⇐⇒ · · · ⇐⇒ PN−1 ⇐⇒ PN

standard problem

Convex Optimization Boyd and Vandenberghe 4.45
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Geometric programming

▶ monomial function:
f (x) = cxa1

1 xa2
2 · · · xan

n , dom f = Rn
++

with c > 0; exponent ai can be any real number
▶ posynomial function: sum of monomials

f (x) =
K∑︁

k=1
ckxa1k

1 xa2k
2 · · · xank

n , dom f = Rn
++

▶ geometric program (GP)

minimize f0 (x)
subject to fi (x) ≤ 1, i = 1, . . . ,m

hi (x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form
▶ change variables to yi = log xi, and take logarithm of cost, constraints
▶ monomial f (x) = cxa1

1 · · · xan
n transforms to

log f (ey1 , . . . , eyn ) = aTy + b (b = log c)
▶ posynomial f (x) = ∑K

k=1 ckxa1k
1 xa2k

2 · · · xank
n transforms to

log f (ey1 , . . . , eyn ) = log

( K∑︁
k=1

eaT
k y+bk

)
(bk = log ck)

▶ geometric program transforms to convex problem

minimize log
(∑K

k=1 exp(aT
0ky + b0k)

)
subject to log

(∑K
k=1 exp(aT

iky + bik)
)
≤ 0, i = 1, . . . ,m

Gy + d = 0
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Examples: Frobenius norm diagonal scaling

▶ we seek diagonal matrix D = diag(d), d ≻ 0, to minimize ∥DMD−1∥2
F

▶ express as

∥DMD−1∥2
F =

n∑︁
i,j=1

(
DMD−1

)2

ij
=

n∑︁
i,j=1

M2
ijd

2
i /d2

j

▶ a posynomial in d (with exponents 0, 2, and −2)
▶ in convex form, with y = log d,

log ∥DMD−1∥2
F = log ©«

n∑︁
i,j=1

exp
(
2(yi − yj + log |Mij |)

)ª®¬
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Quasiconvex optimization

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0 (x))
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Linear-fractional program

▶ linear-fractional program

minimize (cTx + d)/(eTx + f )
subject to Gx ⪯ h, Ax = b

with variable x and implicit constraint eTx + f > 0

▶ equivalent to the LP (with variables y, z)

minimize cTy + dz
subject to Gy ⪯ hz, Ay = bz

eTy + fz = 1, z ≥ 0

▶ recover x★ = y★/z★

Convex Optimization Boyd and Vandenberghe 4.52



Von Neumann model of a growing economy

▶ x, x+ ∈ Rn
++: activity levels of n economic sectors, in current and next period

▶ (Ax)i: amount of good i produced in current period
▶ (Bx+)i: amount of good i consumed in next period
▶ Bx+ ⪯ Ax: goods consumed next period no more than produced this period
▶ x+i /xi: growth rate of sector i
▶ allocate activity to maximize growth rate of slowest growing sector

maximize (over x, x+) mini=1,...,n x+i /xi
subject to x+ ⪰ 0, Bx+ ⪯ Ax

▶ a quasiconvex problem with variables x, x+
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Convex representation of sublevel sets

▶ if f0 is quasiconvex, there exists a family of functions 𝜙t such that:
– 𝜙t (x) is convex in x for fixed t
– t-sublevel set of f0 is 0-sublevel set of 𝜙t, i.e., f0 (x) ≤ t ⇐⇒ 𝜙t (x) ≤ 0

example:
▶ f0 (x) = p(x)/q(x), with p convex and nonnegative, q concave and positive
▶ take 𝜙t (x) = p(x) − tq(x): for t ≥ 0,

– 𝜙t convex in x
– p(x)/q(x) ≤ t if and only if 𝜙t (x) ≤ 0
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Bisection method for quasiconvex optimization

▶ for fixed t, consider convex feasiblity problem

𝜙t (x) ≤ 0, fi (x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

if feasible, we can conclude that t ≥ p★; if infeasible, t ≤ p★

▶ bisection method:

given l ≤ p★, u ≥ p★, tolerance 𝜖 > 0.
repeat

1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ 𝜖 .

▶ requires exactly ⌈log2 ((u − l)/𝜖)⌉ iterations
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Multicriterion optimization

▶ multicriterion or multi-objective problem:

minimize f0 (x) = (F1 (x), . . . ,Fq (x))
subject to fi (x) ≤ 0, i = 1, . . . ,m, Ax = b

▶ objective is the vector f0 (x) ∈ Rq

▶ q different objectives F1, . . . ,Fq; roughly speaking we want all Fi’s to be small
▶ feasible x★ is optimal if y feasible =⇒ f0 (x★) ⪯ f0 (y)
▶ this means that x★ simultaneously minimizes each Fi; the objectives are noncompeting
▶ not surprisingly, this doesn’t happen very often
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Pareto optimality

▶ feasible x dominates another feasible x̃ if f0 (x) ⪯ f0 (x̃) and for at least one i, Fi (x) < Fi (x̃)
▶ i.e., x meets x̃ on all objectives, and beats it on at least one

▶ feasible xpo is Pareto optimal if it is not dominated by any feasible point
▶ can be expressed as: y feasible, f0 (y) ⪯ f0 (xpo) =⇒ f0 (xpo) = f0 (y)

▶ there are typically many Pareto optimal points
▶ for q = 2, set of Pareto optimal objective values is the optimal trade-off curve
▶ for q = 3, set of Pareto optimal objective values is the optimal trade-off surface
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Optimal and Pareto optimal points

set of achievable objective values O = {f0 (x) | x feasible}

▶ feasible x is optimal if f0 (x) is the minimum value of O
▶ feasible x is Pareto optimal if f0 (x) is a minimal value of O

O

f0 (x
★)

x★ is optimal

O

f0(x
po)

xpo is Pareto optimal
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Regularized least-squares

▶ minimize (∥Ax − b∥2
2, ∥x∥2

2) (first objective is loss; second is regularization)
▶ example with A ∈ R100×10; heavy line shows Pareto optimal points
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Risk return trade-off in portfolio optimization

▶ variable x ∈ Rn is investment portfolio, with xi fraction invested in asset i

▶ p̄ ∈ Rn is mean, Σ is covariance of asset returns

▶ portfolio return has mean p̄Tx, variance xTΣx

▶ minimize (−p̄Tx, xTΣx), subject to 1Tx = 1, x ⪰ 0

▶ Pareto optimal portfolios trace out optimal risk-return curve
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Scalarization

▶ scalarization combines the multiple objectives into one (scalar) objective
▶ a standard method for finding Pareto optimal points
▶ choose 𝜆 ≻ 0 and solve scalar problem

minimize 𝜆T f0 (x) = 𝜆1F1 (x) + · · · + 𝜆qFq (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p

▶ 𝜆i are relative weights on the objectives
▶ if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
▶ for convex problems, can find (almost) all Pareto optimal points by varying 𝜆 ≻ 0
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Example
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Example: Regularized least-squares

▶ regularized least-squares problem: minimize (∥Ax − b∥2
2, ∥x∥2

2)
▶ take 𝜆 = (1, 𝛾) with 𝛾 > 0, and minimize ∥Ax − b∥2

2 + 𝛾∥x∥2
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Example: Risk-return trade-off

▶ risk-return trade-off: minimize (−p̄Tx, xTΣx) subject to 1Tx = 1, x ⪰ 0
▶ with 𝜆 = (1, 𝛾) we obtain scalarized problem

minimize −p̄Tx + 𝛾xTΣx
subject to 1Tx = 1, x ⪰ 0

▶ objective is negative risk-adjusted return, p̄Tx − 𝛾xTΣx
▶ 𝛾 is called the risk-aversion parameter

Convex Optimization Boyd and Vandenberghe 4.66


	Convex optimization problems
	Optimization problems
	Some standard convex problems
	Transforming problems
	Disciplined convex programming
	Geometric programming
	Quasiconvex optimization
	Multicriterion optimization


