Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

4. Convex optimization problems

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

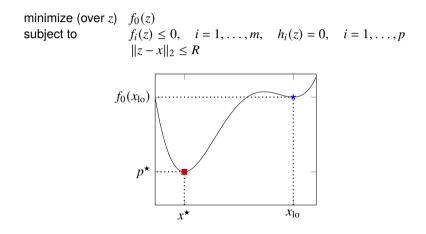
- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0 : \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- ▶ $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, ..., m$, are the inequality constraint functions
- ▶ $h_i : \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

Feasible and optimal points

- ▶ $x \in \mathbf{R}^n$ is **feasible** if $x \in \mathbf{dom} f_0$ and it satisfies the constraints
- optimal value is $p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
- $p^{\star} = \infty$ if problem is infeasible
- $p^{\star} = -\infty$ if problem is **unbounded below**
- a feasible *x* is **optimal** if $f_0(x) = p^*$
- X_{opt} is the set of optimal points

Locally optimal points

x is **locally optimal** if there is an R > 0 such that x is optimal for



Boyd and Vandenberghe

Examples

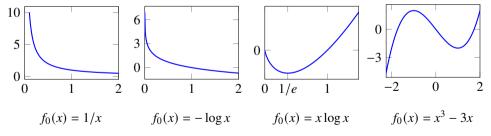
examples with n = 1, m = p = 0

►
$$f_0(x) = 1/x$$
, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x$$
, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$

•
$$f_0(x) = x \log x$$
, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal

►
$$f_0(x) = x^3 - 3x$$
: $p^* = -\infty$, $x = 1$ is locally optimal



Convex Optimization

Implicit and explicit constraints

standard form optimization problem has implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

we call D the **domain** of the problem

• the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the **explicit constraints**

• a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find x
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

- ▶ $p^* = 0$ if constraints are feasible; any feasible *x* is optimal
- $p^{\star} = \infty$ if constraints are infeasible

Standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- objective and inequality constraints f_0, f_1, \ldots, f_m are convex
- equality constraints are affine, often written as Ax = b
- feasible and optimal sets of a convex optimization problem are convex

• problem is **quasiconvex** if f_0 is quasiconvex, f_1, \ldots, f_m are convex, h_1, \ldots, h_p are affine

Example

standard form problem

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- ► f_0 is convex; feasible set $\{(x_1, x_2) | x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (by our definition) since f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:

- ▶ suppose *x* is locally optimal, but there exists a feasible *y* with $f_0(y) < f_0(x)$
- \blacktriangleright x locally optimal means there is an R > 0 such that

z feasible,
$$||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$$

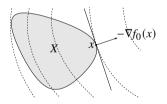
• consider
$$z = \theta y + (1 - \theta)x$$
 with $\theta = R/(2||y - x||_2)$

- ► $||y x||_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- ► $||z x||_2 = R/2$ and $f_0(z) \le \theta f_0(y) + (1 \theta)f_0(x) < f_0(x)$, which contradicts our assumption that *x* is locally optimal

Optimality criterion for differentiable f_0

x is optimal for a convex problem if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible *y*



▶ if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set *X* at *x*

Examples

- **unconstrained problem**: *x* minimizes $f_0(x)$ if and only if $\nabla f_0(x) = 0$
- equality constrained problem: x minimizes $f_0(x)$ subject to Ax = b if and only if there exists a v such that

$$Ax = b, \qquad \nabla f_0(x) + A^T v = 0$$

minimization over nonnegative orthant: x minimizes $f_0(x)$ over \mathbf{R}^n_+ if and only if

$$x \ge 0, \qquad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

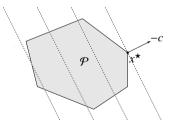
Multicriterion optimization

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \le h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Example: Diet problem

- choose nonnegative quantities x_1, \ldots, x_n of *n* foods
- one unit of food *j* costs c_j and contains amount A_{ij} of nutrient *i*
- healthy diet requires nutrient i in quantity at least b_i
- to find cheapest healthy diet, solve

minimize $c^T x$ subject to $Ax \ge b$, $x \ge 0$

express in standard LP form as

minimize
$$c^T x$$

subject to $\begin{bmatrix} -A \\ -I \end{bmatrix} x \leq \begin{bmatrix} -b \\ 0 \end{bmatrix}$

Example: Piecewise-linear minimization

▶ minimize convex piecewise-linear function $f_0(x) = \max_{i=1,...,m} (a_i^T x + b_i), x \in \mathbf{R}^n$

```
equivalent to LP
```

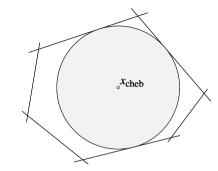
minimize tsubject to $a_i^T x + b_i \le t$, i = 1, ..., m

with variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$

• constraints describe $epi f_0$

Example: Chebyshev center of a polyhedron

Chebyshev center of $\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, ..., m\}$ is center of largest inscribed ball $\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$



•
$$a_i^T x \le b_i$$
 for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

• hence, x_c , r can be determined by solving LP with variables x_c , r

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i$, $i = 1, \dots, m$

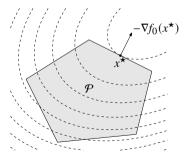
Convex Optimization

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

- ▶ $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Example: Least squares

- least squares problem: minimize $||Ax b||_2^2$
- analytical solution $x^{\star} = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g.,
 - $-x \ge 0$ (nonnegative least squares)
 - $-x_1 \le x_2 \le \cdots \le x_n$ (isotonic regression)

Example: Linear program with random cost

- LP with random cost c, with mean \bar{c} and covariance Σ
- ▶ hence, LP objective $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- **risk-averse** problem:

minimize $\mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$ subject to $Gx \leq h$, Ax = b

- γ > 0 is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
- express as QP

minimize $\bar{c}^T x + \gamma x^T \Sigma x$ subject to $Gx \le h$, Ax = b

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- ► $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- ▶ if $P_1, ..., P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of *m* ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $F x = g$

 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$

inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in$ second-order cone in \mathbf{R}^{n_i+1}

- ▶ for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Example: Robust linear programming

suppose constraint vectors a_i are uncertain in the LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$,

two common approaches to handling uncertainty

• deterministic worst-case: constraints must hold for all $a_i \in \mathcal{E}_i$ (uncertainty ellipsoids)

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$,

stochastic: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

Deterministic worst-case approach

- ▶ uncertainty ellipsoids are $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\}, (\bar{a}_i \in \mathbf{R}^n, P_i \in \mathbf{R}^{n \times n})$
- center of \mathcal{E}_i is \bar{a}_i ; semi-axes determined by singular values/vectors of P_i
- robust LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i$, $i = 1, ..., m$

(follows from $\sup_{\|u\|_{2} \le 1} (\bar{a}_{i} + P_{i}u)^{T}x = \bar{a}_{i}^{T}x + \|P_{i}^{T}x\|_{2}$)

Convex Optimization

Stochastic approach

- assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$
- ► $a_i^T x \sim \mathcal{N}(\bar{a}_i^T x, x^T \Sigma_i x)$, so

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\boldsymbol{\Sigma}_i^{1/2} x\|_2}\right)$$

where $\Phi(u) = (1/\sqrt{2\pi}) \int_{-\infty}^{u} e^{-t^2/2} dt$ is $\mathcal{N}(0, 1)$ CDF

- $\operatorname{prob}(a_i^T x \le b_i) \ge \eta$ can be expressed as $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i$
- for $\eta \ge 1/2$, robust LP equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i = 1, \dots, m$

Convex Optimization

Conic form problem

minimize $c^T x$ subject to $Fx + g \leq_K 0$ Ax = b

- ► constraint $Fx + g \leq_K 0$ involves a generalized inequality with respect to a proper cone K
- linear programming is a conic form problem with $K = \mathbf{R}_{+}^{m}$
- as with standard convex problem
 - feasible and optimal sets are convex
 - any local optimum is global

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \le 0$
 $Ax = b$

with $F_i, G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \le 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \le 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \le 0$$

Convex Optimization

Example: Matrix norm minimization

minimize $||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$

where $A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$ (with given $A_i \in \mathbb{R}^{p \times q}$) equivalent SDP

> minimize tsubject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \ge 0$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$
$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \ge 0$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Change of variables

• $\phi : \mathbf{R}^n \to \mathbf{R}^n$ is one-to-one with $\phi(\mathbf{dom} \phi) \supseteq \mathcal{D}$

consider (possibly non-convex) problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \qquad i=1,\ldots,m \\ & h_i(x)=0, \qquad i=1,\ldots,p \end{array}$$

- change variables to *z* with $x = \phi(z)$
- can solve equivalent problem

$$\begin{array}{ll} \text{minimize} & \tilde{f}_0(z) \\ \text{subject to} & \tilde{f}_i(z) \leq 0, \qquad i=1,\ldots,m \\ & \tilde{h}_i(z)=0, \qquad i=1,\ldots,p \end{array}$$

where $\tilde{f}_i(z) = f_i(\phi(z))$ and $\tilde{h}_i(z) = h_i(\phi(z))$

• recover original optimal point as $x^{\star} = \phi(z^{\star})$

Example

non-convex problem

minimize $x_1/x_2 + x_3/x_1$ subject to $x_2/x_3 + x_1 \le 1$

with implicit constraint x > 0

• change variables using $x = \phi(z) = \exp z$ to get

minimize $\exp(z_1 - z_2) + \exp(z_3 - z_1)$ subject to $\exp(z_2 - z_3) + \exp(z_1) \le 1$

which is convex

Transformation of objective and constraint functions

suppose

- ϕ_0 is monotone increasing
- $\psi_i(u) \leq 0$ if and only if $u \leq 0, i = 1, \dots, m$
- $\varphi_i(u) = 0$ if and only if $u = 0, i = 1, \dots, p$

standard form optimization problem is equivalent to

$$\begin{array}{ll} \text{minimize} & \phi_0(f_0(x)) \\ \text{subject to} & \psi_i(f_i(x)) \leq 0, \qquad i=1,\ldots,m \\ & \varphi_i(h_i(x))=0, \qquad i=1,\ldots,p \end{array}$$

example: minimizing ||Ax - b|| is equivalent to minimizing $||Ax - b||^2$

Converting maximization to minimization

- suppose ϕ_0 is monotone decreasing
- the maximization problem

 $\begin{array}{ll} \text{maximize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$

is equivalent to the minimization problem

$$\begin{array}{ll} \text{minimize} & \phi_0(f_0(x)) \\ \text{subject to} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$$

examples:

- $-\phi_0(u) = -u$ transforms maximizing a concave function to minimizing a convex function
- $-\phi_0(u) = 1/u$ transforms maximizing a concave positive function to minimizing a convex function

Convex Optimization

Eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where *F* and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some *z*

Introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

minimize (over
$$x, y_i$$
) $f_0(y_0)$
subject to $f_i(y_i) \le 0, \quad i = 1, ..., m$
 $y_i = A_i x + b_i, \quad i = 0, 1, ..., m$

Introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

is equivalent to

minimize (over x, s)
$$f_0(x)$$

subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$
 $s_i \ge 0, \quad i = 1, \dots, m$

Epigraph form

standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t
subject to
 $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

Minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \mbox{minimize} & \tilde{f}_0(x_1) \\ \mbox{subject to} & f_i(x_1) \leq 0, \quad i=1,\ldots,m \end{array}$$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \le b$ subject to $diag(Ax - b) \le 0$

(note different interpretation of generalized inequalities \leq in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

SDP: minimize
$$f^T x$$

subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \ge 0, \quad i = 1, \dots, m$

Convex relaxation

- start with **nonconvex problem**: minimize h(x) subject to $x \in C$
- ▶ find convex function \hat{h} with $\hat{h}(x) \le h(x)$ for all $x \in \text{dom } h$ (*i.e.*, a pointwise lower bound on h)
- Find set $\hat{C} \supseteq C$ (e.g., $\hat{C} = \operatorname{conv} C$) described by linear equalities and convex inequalities

$$\hat{C} = \{x \mid f_i(x) \le 0, i = 1, \dots, m, f_m(x) \le 0, Ax = b\}$$

convex problem

minimize
$$\hat{h}(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$, $Ax = b$

is a convex relaxation of the original problem

optimal value of relaxation is lower bound on optimal value of original problem

Example: Boolean LP

mixed integer linear program (MILP):

minimize $c^T(x, z)$ subject to $F(x, z) \leq g$, A(x, z) = b, $z \in \{0, 1\}^q$

with variables $x \in \mathbf{R}^n$, $z \in \mathbf{R}^q$

- \blacktriangleright *z_i* are called **Boolean variables**
- this problem is in general hard to solve
- **LP relaxation**: replace $z \in \{0, 1\}^q$ with $z \in [0, 1]^q$
- optimal value of relaxation LP is lower bound on MILP
- can use as heuristic for approximately solving MILP, e.g., relax and round

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Disciplined convex program

specify objective as

- minimize {scalar convex expression}, or
- maximize {scalar concave expression}

specify constraints as

- {convex expression} <= {concave expression} or</pre>
- {concave expression} >= {convex expression} or
- {affine expression} == {affine expression}
- curvature of expressions are DCP certified, *i.e.*, follow composition rule
- DCP-compliant problems can be automatically transformed to standard forms, then solved

CVXPY example

math:

 $\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b\\ & \|x\|_\infty \le 1 \end{array}$

x is the variable

A, b are given

CVXPY code:

import cvxpy as cp

A, $b = \ldots$

```
x = cp.Variable(n)
obj = cp.norm(x, 1)
constr = [
    A @ x == b,
    cp.norm(x, 'inf') <= 1,
]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```

How CVXPY works

- starts with your optimization problem P₁
- Finds a sequence of equivalent problems $\mathcal{P}_2, \ldots, \mathcal{P}_N$
- ▶ final problem P_N matches a standard form (*e.g.*, LP, QP, SOCP, or SDP)
- calls a specialized solver on \mathcal{P}_N
- retrieves solution of original problem by reversing the transformations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Geometric programming

monomial function:

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom} f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $h_i(x) = 1$, $i = 1, ..., p$

with f_i posynomial, h_i monomial

Convex Optimization

Geometric program in convex form

- change variables to $y_i = \log x_i$, and take logarithm of cost, constraints
- monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k}\right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^{T} y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^{T} y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Convex Optimization

Examples: Frobenius norm diagonal scaling

• we seek diagonal matrix $D = \operatorname{diag}(d), d > 0$, to minimize $\|DMD^{-1}\|_F^2$

express as

$$\|DMD^{-1}\|_F^2 = \sum_{i,j=1}^n \left(DMD^{-1}\right)_{ij}^2 = \sum_{i,j=1}^n M_{ij}^2 d_i^2 / d_j^2$$

- a posynomial in d (with exponents 0, 2, and -2)
- in convex form, with $y = \log d$,

$$\log \|DMD^{-1}\|_F^2 = \log \left(\sum_{i,j=1}^n \exp \left(2(y_i - y_j + \log |M_{ij}|) \right) \right)$$

Convex Optimization

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0 : \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

Linear-fractional program

linear-fractional program

minimize $(c^T x + d)/(e^T x + f)$ subject to $Gx \le h$, Ax = b

with variable *x* and implicit constraint $e^T x + f > 0$

• equivalent to the LP (with variables y, z)

minimize
$$c^T y + dz$$

subject to $Gy \le hz$, $Ay = bz$
 $e^T y + fz = 1$, $z \ge 0$

• recover $x^{\star} = y^{\star}/z^{\star}$

Von Neumann model of a growing economy

- ▶ $x, x^+ \in \mathbf{R}^n_{++}$: activity levels of *n* economic sectors, in current and next period
- $(Ax)_i$: amount of good *i* produced in current period
- $(Bx^+)_i$: amount of good *i* consumed in next period
- ► $Bx^+ \leq Ax$: goods consumed next period no more than produced this period
- x_i^+/x_i : growth rate of sector *i*
- allocate activity to maximize growth rate of slowest growing sector

maximize (over x, x^+) $\min_{i=1,...,n} x_i^+/x_i$ subject to $x^+ \ge 0, \quad Bx^+ \le Ax$

a quasiconvex problem with variables x, x⁺

Convex representation of sublevel sets

▶ if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $-\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*, $f_0(x) \le t \iff \phi_t(x) \le 0$

example:

- ► $f_0(x) = p(x)/q(x)$, with *p* convex and nonnegative, *q* concave and positive
- take $\phi_t(x) = p(x) tq(x)$: for $t \ge 0$,
 - $-\phi_t$ convex in x
 - $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Bisection method for quasiconvex optimization

for fixed t, consider convex feasibility problem

 $\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$ (1)

if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

bisection method:

```
given l \le p^*, u \ge p^*, tolerance \epsilon > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u - l \le \epsilon.
```

► requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Multicriterion optimization

multicriterion or multi-objective problem:

minimize $f_0(x) = (F_1(x), \dots, F_q(x))$ subject to $f_i(x) \le 0$, $i = 1, \dots, m$, Ax = b

- objective is the vector $f_0(x) \in \mathbf{R}^q$
- q different objectives F_1, \ldots, F_q ; roughly speaking we want all F_i 's to be small
- ► feasible x^* is **optimal** if *y* feasible $\implies f_0(x^*) \le f_0(y)$
- this means that x^* simultaneously minimizes each F_i ; the objectives are **noncompeting**
- not surprisingly, this doesn't happen very often

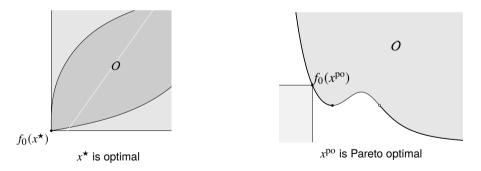
Pareto optimality

- Feasible x dominates another feasible \tilde{x} if $f_0(x) \leq f_0(\tilde{x})$ and for at least one $i, F_i(x) < F_i(\tilde{x})$
- i.e., x meets x on all objectives, and beats it on at least one
- ▶ feasible *x*^{po} is **Pareto optimal** if it is not dominated by any feasible point
- ► can be expressed as: *y* feasible, $f_0(y) \le f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$
- there are typically many Pareto optimal points
- for q = 2, set of Pareto optimal objective values is the **optimal trade-off curve**
- for q = 3, set of Pareto optimal objective values is the **optimal trade-off surface**

Optimal and Pareto optimal points

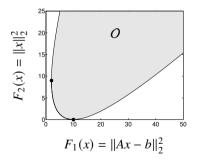
set of achievable objective values $O = \{f_0(x) \mid x \text{ feasible}\}$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of O



Regularized least-squares

- minimize $(||Ax b||_2^2, ||x||_2^2)$ (first objective is loss; second is regularization)
- example with $A \in \mathbf{R}^{100 \times 10}$; heavy line shows Pareto optimal points



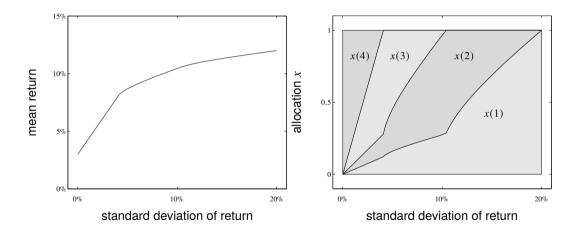
Risk return trade-off in portfolio optimization

- ▶ variable $x \in \mathbf{R}^n$ is investment portfolio, with x_i fraction invested in asset *i*
- $\bar{p} \in \mathbf{R}^n$ is mean, Σ is covariance of asset returns
- portfolio return has mean $\bar{p}^T x$, variance $x^T \Sigma x$

• minimize
$$(-\bar{p}^T x, x^T \Sigma x)$$
, subject to $\mathbf{1}^T x = 1, x \ge 0$

Pareto optimal portfolios trace out optimal risk-return curve

Example



Scalarization

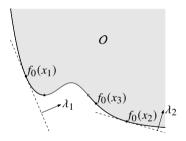
scalarization combines the multiple objectives into one (scalar) objective

- a standard method for finding Pareto optimal points
- choose $\lambda > 0$ and solve scalar problem

minimize $\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$ subject to $f_i(x) \le 0$, $i = 1, \dots, m$, $h_i(x) = 0$, $i = 1, \dots, p$

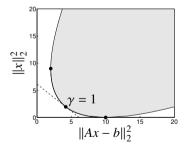
- λ_i are relative weights on the objectives
- ▶ if *x* is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
- For convex problems, can find (almost) all Pareto optimal points by varying $\lambda > 0$

Example



Example: Regularized least-squares

- ▶ regularized least-squares problem: minimize $(||Ax b||_2^2, ||x||_2^2)$
- take $\lambda = (1, \gamma)$ with $\gamma > 0$, and minimize $||Ax b||_2^2 + \gamma ||x||_2^2$



Example: Risk-return trade-off

- ► risk-return trade-off: minimize $(-\bar{p}^T x, x^T \Sigma x)$ subject to $\mathbf{1}^T x = 1, x \ge 0$
- with $\lambda = (1, \gamma)$ we obtain scalarized problem

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \ge 0$

- objective is negative **risk-adjusted return**, $\bar{p}^T x \gamma x^T \Sigma x$
- γ is called the **risk-aversion parameter**